Skip to main content

A Multi-phase nonlinear Optimal control problem solver using Pseudo-spectral collocation

Project description

pypi pacakge Build Status Coverage Status Documentation Status python

MPOPT

MPOPT is a open-source, extensible, customizable and easy to use python package that includes a collection of modules to solve multi-stage non-linear optimal control problems(OCP) using pseudo-spectral collocation methods.

The package uses collocation methods to construct a Nonlinear programming problem (NLP) representation of OCP. The resulting NLP is then solved by algorithmic differentiation based CasADi nlpsolver ( NLP solver supports multiple solver plugins including IPOPT, SNOPT, sqpmethod, scpgen).

Main features of the package are :

  • Customizable collocation approximation, compatible with Legendre-Gauss-Radau (LGR), Legendre-Gauss-Lobatto (LGL), Chebyshev-Gauss-Lobatto (CGL) roots.
  • Intuitive definition of single/multi-phase OCP.
  • Supports Differential-Algebraic Equations (DAEs).
  • Customized adaptive grid refinement schemes (Extendable)
  • Gaussian quadrature and differentiation matrices are evaluated using algorithmic differentiation, thus, supporting arbitrarily high number of collocation points limited only by the computational resources.
  • Intuitive post-processing module to retrieve and visualize the solution
  • Good test coverage of the overall package
  • Active development

Quick start

  • Install from PyPI using the following terminal command, then copy paste the code from example below in a file (test.py) and run (python3 test.py) to confirm the installation.
pip install mpopt
  • (OR) Build directly from source (Terminal). Finally, make run to solve the moon-lander example described below.
git clone https://github.com/mpopt/mpopt.git --branch master
cd mpopt
make install
make test

A sample code to solve moon-lander OCP (2D) under 10 lines

OCP :

Find optimal path, i.e Height ( $x_0$ ), Velocity ( $x_1$ ) and Throttle ( $u$ ) to reach the surface: Height (0m), Velocity (0m/s) from Height (10m) and velocity(-2m/s) with minimum fuel (u).

$$\begin{aligned} &\min_{x, u} & \qquad & J = 0 + \int_{t_0}^{t_f}u\ dt\ &\text{subject to} & & \dot{x_0} = x_1; \dot{x_1} = u - 1.5; x_0 \geq 0; 0 \leq u \leq 3\ & & & x_0(t_0) = 10; \ x_1(t_0) = -2; t_0 = 0.0; x_0(t_f) = 0; \ x_1(t_f) = 0; t_f = \text{free variable} \end{aligned}$$

# Moon lander OCP direct collocation/multi-segment collocation

# from context import mpopt # (Uncomment if running from source)
from mpopt import mp

# Define OCP
ocp = mp.OCP(n_states=2, n_controls=1)
ocp.dynamics[0] = lambda x, u, t: [x[1], u[0] - 1.5]
ocp.running_costs[0] = lambda x, u, t: u[0]
ocp.terminal_constraints[0] = lambda xf, tf, x0, t0: [xf[0], xf[1]]
ocp.x00[0] = [10.0, -2.0]
ocp.lbu[0], ocp.ubu[0] = 0, 3

# Create optimizer(mpo), solve and post process(post) the solution
mpo, post = mp.solve(ocp, n_segments=20, poly_orders=3, scheme="LGR", plot=True)
x, u, t, _ = post.get_data()
mp.plt.show()
  • Experiment with different collocation schemes by changing "LGR" to "CGL" or "LGL" in the above script.
  • Update the grid to recompute solution (Ex. n_segments=3, poly_orders=[3, 30, 3]).
  • For a detailed demo of the mpopt features, refer the notebook getting_started.ipynb

Resources

  • Detailed implementation aspects of MPOPT are part of the master thesis <https://github.com/mpopt/mpopt/blob/01f4612ec84a5f6bec8f694c19b129d9fbc12527/docs/Devakumar-Master-Thesis-Report.pdf>__.
  • Documentation at mpopt.readthedocs.io/<mpopt.readthedocs.io/>

Features and Limitations

While MPOPT is able to solve any Optimal control problem formulation the Bolza form, the present limitations are,

  • Only continuous functions and derivatives are supported
  • Dynamics and constraints are to be written in CasADi variables (Familiarity with casadi variables and expressions is expected)
  • The adaptive grid though successful in generating robust solutions for simple problems, doesn't have a concrete proof on convergence.

Authors

  • Devakumar THAMMISETTY
  • Prof. Colin Jones (Co-author)

License

This project is licensed under the GNU LGPL v3 - see the LICENSE file for details

Acknowledgements

  • Petr Listov

Cite

  • D. Thammisetty, “Development of a multi-phase optimal control software for aerospace applications (mpopt),” Master’s thesis, Lausanne, EPFL, 2020.

BibTex entry:

@mastersthesis{thammisetty2020development,
      title={Development of a multi-phase optimal control software for aerospace applications (mpopt)},
      author={Thammisetty, Devakumar},
      year={2020},
      school={Master’s thesis, Lausanne, EPFL}}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

mpopt-0.1.7-py3.8.egg (223.0 kB view details)

Uploaded Source

File details

Details for the file mpopt-0.1.7-py3.8.egg.

File metadata

  • Download URL: mpopt-0.1.7-py3.8.egg
  • Upload date:
  • Size: 223.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.7.0 requests/2.25.1 setuptools/56.0.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.5

File hashes

Hashes for mpopt-0.1.7-py3.8.egg
Algorithm Hash digest
SHA256 8c99ce5076a74887e791876262d607dfa2d913e537d08a7edf2fd717454ac2b3
MD5 e936491fd88837dd98b616788b6c161e
BLAKE2b-256 f8eddbacffc51e4e90f6a46e5d9106c6bab7b9da0e58dbf930e15b0aad01fd17

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page