Skip to main content

A Multi-phase nonlinear Optimal control problem solver using Pseudo-spectral collocation

Project description

pypi pacakge Build Status Coverage Status Documentation Status python continuous-integration Downloads Code style: black License: LGPL v3

MPOPT

MPOPT is an open-source, extensible, customizable and easy to use python package that includes a collection of modules to solve multi-stage non-linear optimal control problems(OCP) using pseudo-spectral collocation methods.

The package uses collocation methods to construct a Nonlinear programming problem (NLP) representation of OCP. The resulting NLP is then solved by algorithmic differentiation based CasADi nlpsolver ( NLP solver supports multiple solver plugins including IPOPT, SNOPT, sqpmethod, scpgen).

Main features of the package are :

  • Customizable collocation approximation, compatible with Legendre-Gauss-Radau (LGR), Legendre-Gauss-Lobatto (LGL), Chebyshev-Gauss-Lobatto (CGL) roots.
  • Intuitive definition of single/multi-phase OCP.
  • Supports Differential-Algebraic Equations (DAEs).
  • Customized adaptive grid refinement schemes (Extendable)
  • Gaussian quadrature and differentiation matrices are evaluated using algorithmic differentiation, thus, supporting arbitrarily high number of collocation points limited only by the computational resources.
  • Intuitive post-processing module to retrieve and visualize the solution
  • Good test coverage of the overall package
  • Active development

Quick start

  • Install from the Python Package Index repository using the following terminal command, then copy paste the code from example below in a file (test.py) and run (python3 test.py) to confirm the installation.
pip install mpopt
  • (OR) Build directly from source (Terminal). Finally, make run to solve the moon-lander example described below.
git clone https://github.com/mpopt/mpopt.git --branch master
cd mpopt
make build
make run
source env/bin/activate

A sample code to solve moon-lander OCP (2D) under 10 lines

OCP :

Find optimal path, i.e Height ( $x_0$ ), Velocity ( $x_1$ ) and Throttle ( $u$ ) to reach the surface: Height (0m), Velocity (0m/s) from: Height (10m) and velocity(-2m/s) with: minimum fuel (u).

$$\begin{aligned} &\min_{x, u} & \qquad & J = 0 + \int_{t_0}^{t_f}u\ dt\ &\text{subject to} & & \dot{x_0} = x_1; \dot{x_1} = u - 1.5\ & & & x_0(t_f) = 0; \ x_1(t_f) = 0\ & & & x_0(t_0) = 10; \ x_1(t_0) = -2\ & & & x_0 \geq 0; 0 \leq u \leq 3\ & & & t_0 = 0.0; t_f = \text{free variable} \end{aligned}$$

# Moon lander OCP direct collocation/multi-segment collocation

# from context import mpopt # (Uncomment if running from source)
from mpopt import mp

# Define OCP
ocp = mp.OCP(n_states=2, n_controls=1)
ocp.dynamics[0] = lambda x, u, t: [x[1], u[0] - 1.5]
ocp.running_costs[0] = lambda x, u, t: u[0]
ocp.terminal_constraints[0] = lambda xf, tf, x0, t0: [xf[0], xf[1]]
ocp.x00[0] = [10.0, -2.0]
ocp.lbu[0], ocp.ubu[0] = 0, 3
ocp.lbx[0][0] = 0

# Create optimizer(mpo), solve and post process(post) the solution
mpo, post = mp.solve(ocp, n_segments=20, poly_orders=3, scheme="LGR", plot=True)
x, u, t, _ = post.get_data()
mp.plt.show()
  • Experiment with different collocation schemes by changing "LGR" to "CGL" or "LGL" in the above script.
  • Update the grid to recompute solution (Ex. n_segments=3, poly_orders=[3, 30, 3]).
  • For a detailed demo of the mpopt features, refer the notebook getting_started.ipynb

Resources

Features and Limitations

While MPOPT is able to solve any Optimal control problem formulation in the Bolza form, the present limitations of MPOPT are,

  • Only continuous functions and derivatives are supported
  • Dynamics and constraints are to be written in CasADi variables (Familiarity with casadi variables and expressions is expected)
  • The adaptive grid though successful in generating robust solutions for simple problems, doesn't have a concrete proof on convergence.

Authors

  • Devakumar THAMMISETTY
  • Prof. Colin Jones (Co-author)

License

This project is licensed under the GNU LGPL v3 - see the LICENSE file for details

Acknowledgements

  • Petr Listov

Cite

  • D. Thammisetty, “Development of a multi-phase optimal control software for aerospace applications (mpopt),” Master’s thesis, Lausanne, EPFL, 2020.

BibTex entry:

@mastersthesis{thammisetty2020development,
      title={Development of a multi-phase optimal control software for aerospace applications (mpopt)},
      author={Thammisetty, Devakumar},
      year={2020},
      school={Master’s thesis, Lausanne, EPFL}}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mpopt-0.2.2.tar.gz (52.6 kB view details)

Uploaded Source

Built Distribution

mpopt-0.2.2-py3-none-any.whl (64.1 kB view details)

Uploaded Python 3

File details

Details for the file mpopt-0.2.2.tar.gz.

File metadata

  • Download URL: mpopt-0.2.2.tar.gz
  • Upload date:
  • Size: 52.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for mpopt-0.2.2.tar.gz
Algorithm Hash digest
SHA256 6a6d8362a4d669dceb2b126550286a46ce6652230b99eeac6a6b1da4a68c9a9f
MD5 8f83ae4490b5557d1e672280c672a5e1
BLAKE2b-256 430c28179a91df03532fae3570ebb95b33dfa0806277287ac3e4d4e724d07959

See more details on using hashes here.

Provenance

File details

Details for the file mpopt-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: mpopt-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 64.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for mpopt-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 b71ba1b09e42a720a538a5126eeedc688e99db5e86d1232d4d8f1623a993c191
MD5 e791951b1782872ce4a85191391fccb8
BLAKE2b-256 a891103c9515752042ad0a2fe81dc44afbebdee746bff5ae17bd4115d380d55b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page