Skip to main content

Multiprocessing for Pathway Tools

Project description

mpwt: Pathway Tools multiprocessing wrapper

mpwt is a python package for running Pathway Tools on multiple genomes using multiprocessing.

There is no guarantee that this script will work, it is a Work In Progress in early state.



mpwt works only on Python 3 and it has been tested on Python 3.6. It requires some python packages (biopython, docopt and gffutils) and Pathway Tools.

You must have an environment where Pathway Tools is installed. Pathway Tools can be obtained here. For some versions you need to have Blast installed on you system, for further informations look at this page.

If your OS doesn’t support Pathway Tools, you can use a docker. If it’s your case, look at Pathway Tools Multiprocessing Docker. It is a dockerfile that will create a container with Pathway Tools, its dependencies and this package. You just need to give a Pathway Tools installer as input.

You can also look at Pathway Tools Multiprocessing Singularity. More manipulations are required compared to Docker but with this you can create a Singularity image.

Using pip

pip install mpwt


Input data

The script takes a folder containing sub-folders as input. Each sub-folder contains a Genbank/GFF file or multiple PathoLogic Format (PF) files.

├── species_1
│   └── species_1.gbk
├── species_2
│   └── species_2.gff
│   └── species_2.fasta
├── species_3
│   └── species_3.gbk
├── species_4
│   └──
│   └── scaffold_1.fasta
│   └──
│   └── scaffold_2.fasta

Genbank files must have the same name as the folder in which they are located and also finished with a .gbk or a .gff.

For PF files, there is one file for each scaffold/contig and one corresponding fasta file.

Pathway Tools will run on each Genbank/GFF/PF files. It will create the results in the ptools-local folder but you can also choose an output folder.


Genbank file example:

LOCUS       scaffold1         XXXXXX bp    DNA     linear   INV DD-MMM-YYYY
DEFINITION  My species genbank.
ACCESSION   scaffold1
VERSION     scaffold1
KEYWORDS    Key words.
SOURCE      Source
ORGANISM  Species name
            Taxonomy; Of; My; Species; With;
            The; Genus.
FEATURES             Location/Qualifiers
    source          1..XXXXXX
    gene            START..STOP
    mRNA            START..STOP
    CDS             START..STOP

Look at the NCBI GBK format for more informations. You can also look at the example provided on Pathway Tools site.


GFF file example:

##gff-version 3
##sequence-region scaffold_1 1 XXXXXX
scaffold_1  RefSeq  region  1       XXXXXXX .       +       .       ID=region_id;Dbxref=taxon:XXXXXX
scaffold_1  RefSeq  gene    START   STOP    .       -       .       ID=gene_id
scaffold_1  RefSeq  CDS     START   STOP    .       -       0       ID=cds_id;Parent=gene_id

Warning: it seems that metabolic networks from GFF file have less reactions/pathways/compounds than metabolic networks from Genbank file. Lack of some annotations (EC, GO) can be the reason explaining these differences.

Look at the NCBI GFF format for more informations.

You have to provide a nucleotide sequence file associated with the GFF file containing the chromosome/scaffold/contig sequence.

PathoLogic Format

PF file example:

;; scaffold_1
ID  gene_id
NAME        gene_id
PRODUCT-ID  prot gene_id

Look at the Pathologic format for more informations.

You have to provide one nucleotide sequence for each pathologic containing one scaffold/contig.


Also to add the taxon ID we need the taxon_id.tsv (a tsv file with two values: the name of the folder containing the PF files and the taxon ID corresponding).

species taxon_id
species_4 4

If you don’t have taxon ID in your Genbank or GFF file, you can add one in this file for the corresponding species.

Input files created by mpwt

Three input files are created by mpwt. Informations are extracted from the Genbank/GFF/PF file. myDBName corresponds to the name of the folder and the Genbank/GFF/PF file. taxonid corresponds to the taxonid in the db_xref of the source feature in the Genbank/GFF/PF. species_name is extracted from the Genbank/GFF/PF files.

ID  myDBName
NCBI-TAXON-ID   taxonid
NAME    species_name

ANNOT-FILE  gbk_pathname

(in-package :ecocyc)
(select-organism :org-id 'myDBName)
(let ((*progress-noter-enabled?* NIL))

Command Line and Python arguments

mpwt can be used with the command line:

mpwt -f path/to/folder/input [-o path/to/folder/output] [--patho] [--hf] [--dat] [--md] [--cpu INT] [-r] [--clean] [--log path/to/folder/log] [--ignore-error] [-v]

Optional argument are identified by [].

mpwt can be used in a python script with an import:

import mpwt

folder_input = "path/to/folder/input"
folder_output = "path/to/folder/output"

Command line argument Python argument description
-f folder_input(string: folder pathname) input folder as described in Input data
-o folder_output(string: folder pathname) output folder containing PGDB data or dat files (see –dat arguments)
–patho patho_inference(boolean) launch PathoLogic inference on input folder
–hf patho_hole_filler(boolean) launch PathoLogic Hole Filler with Blast
–dat dat_creation(boolean) Create BioPAX/attribute-value dat files
–md dat_extraction(boolean) Move only the dat files inside the output folder
–cpu number_cpu(int) Number of cpu used for the multiprocessing
-r size_reduction(boolean) Delete PGDB in ptools-local to reduce size and return compressed files
–log patho_log(string: folder pathname) Folder where log files for PathoLogic inference will be store
–delete mpwt.remove_pgdbs(string: pgdb name) Delete a specific PGDB
–clean Delete all PGDBs in ptools-local folder or only PGDB from input folder
–ignore-error ignore_error(boolean) Ignore errors and continue the workflow for successful build
–taxon-file taxon_file(boolean) Force mpwt to use the taxon ID in the taxon_id.tsv file
-v verbose(boolean) Print some information about the processing of mpwt


Possible uses of mpwt:

command line
import mpwt
python script

Create PGDBs of studied organisms inside ptools-local:

mpwt -f path/to/folder/input --patho
import mpwt

Create PGDBs of studied organisms inside ptools-local with the Hole-Filler:

mpwt -f path/to/folder/input --patho --hf --log path/to/folder/log
import mpwt

Create PGDBs of studied organisms inside ptools-local and create dat files:

mpwt -f path/to/folder/input --patho --dat
import mpwt

Create PGDBs of studied organisms inside ptools-local. Then move the files to the output folder.

mpwt -f path/to/folder/input --patho -o path/to/folder/output
import mpwt

Create PGDBs of studied organisms inside ptools-local and create dat files. Then move the dat files to the output folder.

mpwt -f path/to/folder/input --patho --dat -o path/to/folder/output --md
import mpwt

Create dat files for the PGDB inside ptools-local. And move them to the output folder.

mpwt --dat -o path/to/folder/output --md
import mpwt

Move PGDB from ptools-local to the output folder:

mpwt -o path/to/folder/output
import mpwt

Move dat files from ptools-local to the output folder:

mpwt -o path/to/folder/output --md
import mpwt

Useful functions

  • Run the multiprocess Pathway Tools on input folder
import mpwt
  • Delete all the previous PGDB and the metadata files
import mpwt

This can also be used with a command line argument:

mpwt --clean

If you use clean and the argument -f input_folder, it will delete input files (‘dat_creation.lisp’, ‘pathologic.log’, ‘genetic-elements.dat’ and ‘organism-params.dat’) and the PGDB corresponding to the input folder.

mpwt -f input_folder --clean

For example if you have:

├── species_1
│   └── species_1.gbk
├── species_2
│   └── species_2.gff
│   └── species_2.fasta
├── species_3
│   └── species_3.gbk

And you have in your ptools-local:

├── pgdbs
    ├── user
        ├── species_1cyc
        │   └── ..
        ├── species_2cyc
        │   └── ..
        ├── species_3cyc
        │   └── ..
        ├── species_4cyc
        │   └── ..

The command:

mpwt -f input_folder --clean

will delete species_1cyc, species_2cyc and species_3cyc but not species_4cyc.

  • Delete a specific PGDB

With this command, it is possible to delete a specified db, where pgdb_name is the name of the PGDB (ending with ‘cyc’). It can be multiple pgdbs, to do this, put all the pgdb IDs in a string separated by a ‘,’.

import mpwt

And as a command line:

mpwt --delete mydbcyc1,mydbcyc2
  • Return the path of ptools-local
import mpwt
ptools_local_path = mpwt.find_ptools_path()
  • Return a list containing all the PGDBs inside ptools-local folder
import mpwt
list_of_pgdbs = mpwt.list_pgdb()

Can be used as a command with:

mpwt --list


If you encounter errors (and it is highly possible) there is some tips that can help you resolved them.

For error during PathoLogic inference, you can use the log arguments. The log contains the summary of the build and the error for each species. There is also a pathologic.log in each sub-folders.

If the build passed you have also the possibility to see the result of the inference with the file resume_inference.tsv. For each species, it contains the number of genes/proteins/reactions/pathways/compounds in the metabolic network.

If Pathway Tools crashed, mpwt can print some useful information in verbose mode. It will show the terminal in which Pathway Tools has crashed. Also, if there is an error in pathologic.log, it will be shown after === Error in Pathologic.log ===.

You can also ignore PathoLogic errors by using the argument –ignore-error/ignore_error. This option will ignore error and continue the mpwt workflow on the successful PathoLogic build.


If you did not use the output argument, results (PGDB with/without BioPAX/dat files) will be inside your ptools-local folder ready to be used with Pathway Tools. Have in mind that mpwt does not create the cellular overview and does not used the hole-filler. So if you want these results you should run them after.

If you used the output argument, there is two potential outputs depending on the use of the option –md/dat_extraction:

  • without –md/dat_extraction, you will have a complete PGDB folder inside your results, for example:
├── species_1
│   └── default-version
│   └── 1.0
│       └── data
│           └── contains BioPAX/dat files if you used the --dat/dat_creation option.
│       └── input
│           └── species_1.gbk
│           └── genetic-elements.dat
│           └── organism-init.dat
│           └── organism.dat
│       └── kb
│           └── species_1.ocelot
│       └── reports
│           └── contains Pathway Tools reports.
├── species_2
├── species_3
  • with –md/dat_extraction, you will only have the dat files, for example:
├── species_1
│   └── classes.dat
│   └── compounds.dat
│   └── dnabindsites.dat
│   └── enzrxns.dat
│   └── genes.dat
│   └── pathways.dat
│   └── promoters.dat
│   └── protein-features.dat
│   └── proteins.dat
│   └── protligandcplxes.dat
│   └── pubs.dat
│   └── reactions.dat
│   └── regulation.dat
│   └── regulons.dat
│   └── rnas.dat
│   └── species.dat
│   └── terminators.dat
│   └── transunits.dat
│   └── ..
├── species_2
├── species_3
  • with the -r /size_reduction argument, you will have compressed zip files (and PGDBs inside ptools-local will be deleted):

Release Notes

Changes between version are listed on the release page.


Mézaine Aite for his work on the first draft of this package.

Clémence Frioux for her work and feedbacks.

Peter Karp, Suzanne Paley, Markus Krummenacker, Richard Billington and Anamika Kothari from the Bioinformatics Research Group of SRI International for their help on Pathway Tools and on Genbank format.

GenOuest bioinformatics ( core facility for providing the computing infrastructure to test this tool.

All the users that have tested this tool.

Project details

Release history Release notifications

This version
History Node


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
mpwt-0.5.tar.gz (21.7 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page