Monotonic composite quantile gradient boost regressor
Project description
MQBoost
Multiple quantiles estimation model maintaining non-crossing condition (or monotone quantile condition) using:
- LightGBM
- XGBoost
Installation
Install using pip:
pip install mqboost
Usage
Features
- MQRegressor: quantile regressor
Parameters
x # Explanatory data (e.g. pd.DataFrame)
# Column name '_tau' must be not included
y # Response data (e.g. np.ndarray)
alphas # Target quantiles
# It must be in ascending order and not contain duplicates
objective # [Optional] objective to minimize, "check"(default) or "huber"
model # [Optional] boost algorithm to use, "lightgbm"(default) or "xgboost"
delta # [Optional] parameter in "huber" objective, used when objective == "huber"
# It must be smaller than 0.1
Methods
train # train quantile model
# Any params related to model can be used except "objective"
predict # predict with input data
Example
import numpy as np
from mqboost import MQRegressor
## Generate sample
sample_size = 500
x = np.linspace(-10, 10, sample_size)
y = np.sin(x) + np.random.uniform(-0.4, 0.4, sample_size)
x_test = np.linspace(-10, 10, sample_size)
y_test = np.sin(x_test) + np.random.uniform(-0.4, 0.4, sample_size)
## target quantiles
alphas = [0.3, 0.4, 0.5, 0.6, 0.7]
## model name
model = "lightgbm" # "xgboost"
## objective funtion
objective = "huber" # "check"
delta = 0.01 # set when objective is huber default 0.05
## LightGBM based quantile regressor
mq_lgb = MQRegressor(
x=x,
y=y_test,
alphas=alphas,
objective=objective,
model=model,
delta=delta,
)
## train
lgb_params = {
"max_depth": 4,
"num_leaves": 15,
"learning_rate": 0.1,
"boosting_type": "gbdt",
}
mq_lgb.train(params=lgb_params)
## predict
preds_lgb = mq_lgb.predict(x=x_test, alphas=alphas)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mqboost-0.0.2.tar.gz
(4.8 kB
view details)
Built Distribution
File details
Details for the file mqboost-0.0.2.tar.gz
.
File metadata
- Download URL: mqboost-0.0.2.tar.gz
- Upload date:
- Size: 4.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.12.1 Linux/6.5.0-1023-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9216892d5065496500e1c63018fcef5597a0a82d97f7297bcee0a4c5768e1660 |
|
MD5 | 4faa8411aeb896920d521d7eb8b0fa63 |
|
BLAKE2b-256 | fae7373cc3e8a729ffc788ea754c9863a31b2fd9dc70c7535bf970c1114bcd49 |
File details
Details for the file mqboost-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: mqboost-0.0.2-py3-none-any.whl
- Upload date:
- Size: 6.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.12.1 Linux/6.5.0-1023-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 159c6a92856fa7e9b34be756a25306b96660c9cf34cf8340483da2b5a711714b |
|
MD5 | 99d05efd46dc07dd07f28315f94631b5 |
|
BLAKE2b-256 | c79d9e1a83695616836a0d39f7eadcdf151d73142d8a7a639829d3f504e850a9 |