Skip to main content

Monotonic composite quantile gradient boost regressor

Project description

release PyPI

MQBoost introduces an advanced model for estimating multiple quantiles while ensuring the non-crossing condition (monotone quantile condition). This model harnesses the capabilities of both LightGBM and XGBoost, two leading gradient boosting frameworks.

By implementing the hyperparameter optimization prowess of Optuna, this model achieves great performance and precision. Optuna's optimization algorithms fine-tune the hyperparameters, ensuring the model operates efficiently.

Installation

Install using pip:

pip install mqboost

Usage

Features

  • MQRegressor: quantile regressor

Parameters

x         # Explanatory data (e.g. pd.DataFrame)
          # Column name '_tau' must be not included
y         # Response data (e.g. np.ndarray)
alphas    # Target quantiles
          # It must be in ascending order and not contain duplicates
objective # [Optional] objective to minimize, "check"(default) or "huber"
model     # [Optional] boost algorithm to use, "lightgbm"(default) or "xgboost"
delta     # [Optional] parameter in "huber" objective, only used when objective == "huber"
          # It must be smaller than 0.1

Methods

train           # train quantile model
                # Any params related to model can be used except "objective"
predict         # predict with input data
optimize_params # Optimize hyperparameter with using optuna

Example

import numpy as np
from mqboost import MQRegressor

# Generate sample data
sample_size = 500
x = np.linspace(-10, 10, sample_size)
y = np.sin(x) + np.random.uniform(-0.4, 0.4, sample_size)
x_test = np.linspace(-10, 10, sample_size)
y_test = np.sin(x_test) + np.random.uniform(-0.4, 0.4, sample_size)

# Define target quantiles
alphas = [0.3, 0.4, 0.5, 0.6, 0.7]

# Specify model type
model = "lightgbm"  # Options: "lightgbm" or "xgboost"

# Set objective function
objective = "huber"  # Options: "huber" or "check"
delta = 0.01  # Set when objective is "huber", default is 0.05

# Initialize the LightGBM-based quantile regressor
mq_lgb = MQRegressor(
    x=x,
    y=y_test,
    alphas=alphas,
    objective=objective,
    model=model,
    delta=delta,
)

# Train the model with fixed parameters
lgb_params = {
    "max_depth": 4,
    "num_leaves": 15,
    "learning_rate": 0.1,
    "boosting_type": "gbdt",
}
mq_lgb.train(params=lgb_params)

# Train the model with Optuna hyperparameter optimization
mq_lgb.train(n_trials=10)
# Alternatively, you can optimize parameters first and then train
# best_params = mq_lgb.optimize_params(n_trials=10)
# mq_lgb.train(params=best_params)

# Predict using the trained model
preds_lgb = mq_lgb.predict(x=x_test, alphas=alphas)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mqboost-0.1.1.tar.gz (8.5 kB view details)

Uploaded Source

Built Distribution

mqboost-0.1.1-py3-none-any.whl (9.5 kB view details)

Uploaded Python 3

File details

Details for the file mqboost-0.1.1.tar.gz.

File metadata

  • Download URL: mqboost-0.1.1.tar.gz
  • Upload date:
  • Size: 8.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.1 Linux/6.5.0-1023-azure

File hashes

Hashes for mqboost-0.1.1.tar.gz
Algorithm Hash digest
SHA256 587f621b41bee5aa2d766508c23f5680a98ee59922bad0bcc37de6df261762f1
MD5 bd31a7186b553bf7b76542e835ce75a8
BLAKE2b-256 b5daed106888313e7aca703cecb09799ea7e0b3bbe9dae59f4bd5a3fc847d503

See more details on using hashes here.

File details

Details for the file mqboost-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: mqboost-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 9.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.1 Linux/6.5.0-1023-azure

File hashes

Hashes for mqboost-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 2f5512e74c6242a0b2a49388eb037581d4856bb0cea33f6e25b64673565dda24
MD5 bc0b04c96ed527b6b906e87286e39f45
BLAKE2b-256 74cebc01969f6861b9a96fc271dae3895de3e8d887addcac9f3139d4d3d0486c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page