Skip to main content

MR acquisition-invariant network.

Project description

[![Coverage](https://scrutinizer-ci.com/g/wmkouw/mrai-net/badges/coverage.png?b=master)](https://scrutinizer-ci.com/g/wmkouw/mrai-net/statistics/)
[![BuildStatus](https://travis-ci.org/wmkouw/mrai-net.svg?branch=master)](https://travis-ci.org/wmkouw/mrai-net) [![Docs](https://media.readthedocs.org/static/projects/badges/passing-flat.svg)](https://mrai-net.readthedocs.io/en/latest/index.html) ![Python version](https://img.shields.io/badge/python-3.5%2C%203.6-blue.svg) [![DOI](https://zenodo.org/badge/95411302.svg)](https://zenodo.org/badge/latestdoi/95411302)

# MR Acquisition-Invariant Neural Network

This repository contains experiments and code accompanying the paper:

"MR Acquisition-Invariant Representation Learning"

which is currently under review. The preprint is on [ArXiv](https://arxiv.org/abs/1709.07944).

## Installation

mrainet can be installed through:
```shell
pip install mrainet
```

PyPI takes care of all dependencies. However, to ensure that these don't mess up your current python environment, you should set up a virtual one. If you're familiar with [conda](https://conda.io/docs/), you can do this through:
```
conda env create -f environment.yml
source activate mrainet
```

## Usage

Please visit the [examples](https://mrai-net.readthedocs.io/en/latest/examples.html) section in the documentation to get started.

To give you an impression of how the module is used, here's an example call:
```python
from mrainet.mraicnn import MRAIConvolutionalNeuralNetwork

M = MRAIConvolutionalNeuralNetwork()
M.train(X,Y,Z,U)

H = M.feedforward(X)
```
where X are MRI-scans from the source scanner, Y are their corresponding segmentations, Z are MRI-scans from the target scanner, and U is its corresponding incomplete segmentations (nearly all are NaN). H represents the patches fed through the network and embedded in MRAI-net's penultimate layer (MRAI representation).

For more information on individual classes, methods and functions, visit the [docs](https://mrai-net.readthedocs.io/en/latest/).

## Data

In order to isolate MRI-scanner acquisition-based variation in medical images, we simulated datasets of varying scan protocol parameters using [SIMRI](https://www.ncbi.nlm.nih.gov/pubmed/15705518). High-quality human brain phantoms were used, which can be found here:
- [Brainweb](http://brainweb.bic.mni.mcgill.ca/)


The original code for SIMRI can be downloaded from [here](https://sourceforge.net/projects/simri/). Our repo contains a modified version of SIMRI that includes the additional NMR relaxation times, as described in the paper's appendix. For more information on how to run your own simulations, see the example shell script named `run_simulation.sh` in the folder `data/brainweb/simulator`.

Real data consisted of the MRBrainS data set, known from the brain tissue segmentation challenge at MICCAI 2013.
- [MRBrainS](http://mrbrains13.isi.uu.nl/)

We used only the 5 training scans provided, as the labels for the remaining 15 scans have not been released.

## Experiments

Experimental scripts from the paper are included in this repository:
- `exp-mrai-cnn_b1b3`: simulated data from MRI-scanners with different acquisition protocols.
- `exp_mrai-cnn_b1mb`: simulated data as souce and real data as target, for different field strengths.
- `exp_mrai-cnn_b3mb`: simulated data as souce and real data as target, for equivalent field strengths.

For more information on experiment parameters and setup, see the [README](https://github.com/wmkouw/mrai-net/tree/master/experiments) in the experiments folder.

## Contact
Bugs, comments and questions can be submitted to the [issues tracker](https://github.com/wmkouw/mrai-net/issues).


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mrainet-0.1.0.tar.gz (20.3 kB view details)

Uploaded Source

Built Distribution

mrainet-0.1.0-py2.py3-none-any.whl (25.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file mrainet-0.1.0.tar.gz.

File metadata

  • Download URL: mrainet-0.1.0.tar.gz
  • Upload date:
  • Size: 20.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for mrainet-0.1.0.tar.gz
Algorithm Hash digest
SHA256 c5ff3711bec5328f4a548f1ed7d3b87069f39075b29032fa65535d9d55cd95ad
MD5 2cc83ac16e06e4101fc97e13c5ebcece
BLAKE2b-256 6c363fa55c96a1db7f702278580f8b3a1de2bee012ba6834d9d0c1539e995d8a

See more details on using hashes here.

File details

Details for the file mrainet-0.1.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for mrainet-0.1.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 cad2a2c934a856d8ca552e843411003a9ed84760627afa698be0454e717ec3c3
MD5 a24474506877e906363b58e15398e0ac
BLAKE2b-256 e901d6334ace1608b83a3daa5c88cf2c4329e88d2d32f5b749cc3e719e473035

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page