Skip to main content

Quality assurance tools for MRI geometric distortion

Project description

mri_distortion_toolkit

codecov tests docs

This code enables characterization, reporting, and correction of geometric distortion in Magnetic Resonance Imaging.

For the measurement of such distortions, see here.

The workflow steps are below, but all steps have well defined input/output so you can use any part of this code independently from the other parts. For a tutorial on each step, click on the diagram below. For an example of our automated reporting template see here

flowchart LR
    A[Marker <br>Extraction]--->B[Marker <br>Matching]
    B[Marker <br>Matching]--->C[Field <br> Calculation] & E[Automated <br>reporting]
    C[Field <br> Calculation]-->D[Spherical Harmonic <br>Analysis]
    D[Spherical Harmonic <br>Analysis]-->E[Automated <br>reporting];
    D[Spherical Harmonic <br>Analysis]-->F[Distortion Correction]

    click A "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/code_docs.html#MRI_DistortionQA.MarkerAnalysis.MarkerVolume"
    click B "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/code_docs.html#MRI_DistortionQA.MarkerAnalysis.MatchedMarkerVolumes"
    click C "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/code_docs.html#MRI_DistortionQA.FieldCalculation.ConvertMatchedMarkersToBz"
    click D "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/code_docs.html#MRI_DistortionQA.FieldAnalysis.SphericalHarmonicFit"
    click E "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/code_docs.html#MRI_DistortionQA.Reports.MRI_QA_Reporter"

Setup/Build/Install

pip install mri_distortion_toolkit

Usage

Detailed documentation is here.

Directory Structure

  • docsrc markdown/rst source documentation
  • tests test cases
  • MRI_DistortionQA source code
  • examples source code for the worked examples

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mri_distortion_toolkit-0.10.1.tar.gz (50.9 kB view details)

Uploaded Source

Built Distribution

mri_distortion_toolkit-0.10.1-py3-none-any.whl (54.5 kB view details)

Uploaded Python 3

File details

Details for the file mri_distortion_toolkit-0.10.1.tar.gz.

File metadata

File hashes

Hashes for mri_distortion_toolkit-0.10.1.tar.gz
Algorithm Hash digest
SHA256 ea335f02a018209a5025d697eb8e3bb54fc554e1e505c398d4c319b861c4a3e5
MD5 9ebfdfae23a79fc11f05b63e05043ef0
BLAKE2b-256 6daa768eeb33ada37fb6598eee155f3e6d1f776075eb55ebafb1321a772adc14

See more details on using hashes here.

File details

Details for the file mri_distortion_toolkit-0.10.1-py3-none-any.whl.

File metadata

File hashes

Hashes for mri_distortion_toolkit-0.10.1-py3-none-any.whl
Algorithm Hash digest
SHA256 25e08d19ca83f365e973e608d1f2e37809ed107f4f4e0d77deb875c95b929624
MD5 93fc551ba0473db6f3f7555c0ba0ffb5
BLAKE2b-256 7464f5914c19925b257570f13adb63773f913373815ff0117ee745fbb2da7611

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page