Skip to main content

Quality assurance tools for MRI geometric distortion

Project description

mri_distortion_toolkit

codecov tests docsPyPI version

This code enables characterization, reporting, and correction of geometric distortion in Magnetic Resonance Imaging.

The workflow steps are below. All steps have well defined input/output so you can use any part of this code independently from the other parts. For an example of our automated reporting template see here

flowchart LR

AA[Phantom Design]

A[Marker <br>Extraction]--->B[Marker <br>Matching]
B[Marker <br>Matching]--->C[Field <br> Calculation] & E[Automated <br>reporting]
C[Field <br> Calculation]-->D[Spherical Harmonic <br>Analysis]
D[Spherical Harmonic <br>Analysis]-->E[Automated <br>reporting];
D[Spherical Harmonic <br>Analysis]-->F[Distortion Correction]

click AA "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/phantom_notes.html"
click A "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/marker_extraction.html"
click B "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/marker_matching.html"
click C "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/field_calculation.html"
click D "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/fit_spherical_harmonics.html"
click E "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/reporting.html"

Setup/Build/Install

pip install mri_distortion_toolkit

Usage

Detailed documentation is here.

Directory Structure

  • docsrc markdown/rst source documentation
  • tests test cases
  • mri_distortion_toolkit source code
  • examples source code for the worked examples

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mri_distortion_toolkit-0.14.1.tar.gz (69.4 kB view details)

Uploaded Source

Built Distribution

mri_distortion_toolkit-0.14.1-py3-none-any.whl (67.3 kB view details)

Uploaded Python 3

File details

Details for the file mri_distortion_toolkit-0.14.1.tar.gz.

File metadata

File hashes

Hashes for mri_distortion_toolkit-0.14.1.tar.gz
Algorithm Hash digest
SHA256 74339f6399f01127be6e407ecb8e08d0be8a735725dff5b853218ab42abebfd1
MD5 879d258db54441fb7c42482d177c9d22
BLAKE2b-256 e9c104074512b139c4c2c1a42604768b959c2761dea180835c4e083714afc684

See more details on using hashes here.

File details

Details for the file mri_distortion_toolkit-0.14.1-py3-none-any.whl.

File metadata

File hashes

Hashes for mri_distortion_toolkit-0.14.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3c72fe28eeff5700ef037760154ab8930a266d068cb3469bd302546f22181d6d
MD5 dfd9b2f1700ac48a0423fcf932e74c6a
BLAKE2b-256 aab5e6365f4c42dd7b13f844eefe71fdbf6d4d134bce0ee6e5a5812b8b5ca901

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page