Skip to main content

Quality assurance tools for MRI geometric distortion

Project description

mri_distortion_toolkit

codecov tests docsPyPI version

This code enables characterization, reporting, and correction of geometric distortion in Magnetic Resonance Imaging.

The workflow steps are below. All steps have well defined input/output so you can use any part of this code independently from the other parts. For an example of our automated reporting template see here

flowchart LR

AA[Phantom Design]

A[Marker <br>Extraction]--->B[Marker <br>Matching]
B[Marker <br>Matching]--->C[Field <br> Calculation] & E[Automated <br>reporting]
C[Field <br> Calculation]-->D[Spherical Harmonic <br>Analysis]
D[Spherical Harmonic <br>Analysis]-->E[Automated <br>reporting];
D[Spherical Harmonic <br>Analysis]-->F[Distortion Correction]

click AA "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/phantom_notes.html"
click A "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/marker_extraction.html"
click B "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/marker_matching.html"
click C "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/field_calculation.html"
click D "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/fit_spherical_harmonics.html"
click E "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/reporting.html"

Setup/Build/Install

pip install mri_distortion_toolkit

Usage

Detailed documentation is here.

Directory Structure

  • docsrc markdown/rst source documentation
  • tests test cases
  • mri_distortion_toolkit source code
  • examples source code for the worked examples

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mri_distortion_toolkit-0.14.6.tar.gz (69.6 kB view details)

Uploaded Source

Built Distribution

mri_distortion_toolkit-0.14.6-py3-none-any.whl (67.4 kB view details)

Uploaded Python 3

File details

Details for the file mri_distortion_toolkit-0.14.6.tar.gz.

File metadata

File hashes

Hashes for mri_distortion_toolkit-0.14.6.tar.gz
Algorithm Hash digest
SHA256 a7b16b28d5f29afca2ed4089925edbaa38742308290b19aa0bbc5b445ee3e27f
MD5 36e8eb1537f97c381acc9ff460229d5a
BLAKE2b-256 d03c45d0398ea68a71e32268bb7970bd326383a28f603cc9504dda7affa74a4f

See more details on using hashes here.

File details

Details for the file mri_distortion_toolkit-0.14.6-py3-none-any.whl.

File metadata

File hashes

Hashes for mri_distortion_toolkit-0.14.6-py3-none-any.whl
Algorithm Hash digest
SHA256 0db18a22941086a0578446df022f4a8fec51cdeb5181097e966e0e7e523e435c
MD5 500197e02092194e604d2931a161dae2
BLAKE2b-256 2e8caa159f3ba72e7623c348b27476603c3ddfc336d1ec1d44a63a8a68f5cd5c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page