Library for MRI noise analysis
Project description
MRINA: A library for MRI Noise Analysis
Modeling noise random fields generated from [ArXiv]
Lauren Hensley Partin, Daniele E. Schiavazzi and Carlos A. Sing-Long Collao
The mrina library provides functionalities to
Examples for single-image processing
Original Image | k-space |
---|---|
Read grayscale image
import cv2
im = cv2.imread('city.png', cv2.IMREAD_GRAYSCALE)/255.0
Read grayscale image
from mrina import generateSamplingMask
# Select an undesampling ratio
delta = 0.25
# Generate an undersampling mask
omega = generateSamplingMask(im.shape, delta, 'bernoulli')
# Verify the undersampling ratio
nsamp = np.sum((omega == 1).ravel())/np.prod(omega.shape)
print('Included frequencies: %.1f%%' % (nsamp*100))
Read grayscale image
import pywt
waveName = 'haar'
waveMode = 'zero'
wim = pywt.coeffs_to_array(pywt.wavedec2(im, wavelet=waveName, mode=waveMode))[0]
plt.figure(figsize=(8,8))
plt.imshow(np.log(np.abs(wim)+1.0e-5), cmap='gray')
plt.axis('off')
plt.show()
Initialize a WaveletToFourier operator and generate undersampled k-space measurements
from maps import OperatorWaveletToFourier
A = OperatorWaveletToFourier(im.shape, samplingSet=omega[0], waveletName=waveName)
yim = A.eval(wim, 1)
Noiseless recovery using l1-norm minimization
from solver_l1_norm import RecoveryL1NormNoisy
# Recovery - for low values of eta it is better to use SoS-L1Ball
wimrec_cpx, _ = RecoveryL1NormNoisy(0.01, yim, A, disp=True, method='SoS-L1Ball')
# The recovered coefficients could be complex!
imrec_cpx = A.getImageFromWavelet(wimrec_cpx)
imrec = np.abs(imrec_cpx)
Generate k-space noise
# Target SNR
SNR = 50
# Signal power. The factor 2 accounts for real/imaginary parts
yim_pow = la.norm(yim.ravel()) ** 2 / (2 * yim.size)
# Noise st. dev.
sigma = np.sqrt(yim_pow / SNR)
# Noisy measurements
y = yim + sigma * (np.random.normal(size=yim.shape) + 1j * np.random.normal(size=yim.shape))
Image recovery with l1-norm minimization
# Parameter eta
eta = np.sqrt(2 * y.size) * sigma
# Recovery
wimrec_noisy_cpx, _ = RecoveryL1NormNoisy(eta, y, A, disp=True, disp_method=False, method='BPDN')
# The recovered coefficients could be complex!
imrec_noisy = np.abs(A.getImageFromWavelet(wimrec_noisy_cpx))
Estimator debiasing
# Support of noisy solution
wim_supp = np.where(np.abs(wimrec_noisy_cpx) > 1E-4 * la.norm(wimrec_noisy_cpx.ravel(), np.inf), True, False)
# Restriction of the operator
Adeb = A.colRestrict(wim_supp)
# Solve least-squares problem
lsqr = lsQR(Adeb)
lsqr.solve(y[Adeb.samplingSet])
wimrec_noisy_cpx_deb = np.zeros(Adeb.wavShape,dtype=np.complex)
wimrec_noisy_cpx_deb[Adeb.basisSet] = lsqr.x[:]
# The recovered coefficients could be complex!
imrec_noisy_deb = np.abs(Adeb.getImageFromWavelet(wimrec_noisy_cpx_deb))
Image recovery with stOMP
from solver_omp import lsQR,OMPRecovery
# Recovery
wimrec_noisy_cpx, _ = OMPRecovery(A, y)
# The recovered coefficients could be complex!
imrec_noisy_cpx = A.getImageFromWavelet(wimrec_noisy_cpx)
imrec_noisy = np.abs(imrec_noisy_cpx)
Script functionalities
Sample generation
python -m mrina.genSamples --fromdir KSPACEDIR \
--repetitions REALIZATIONS \
--origin IMGNAME \
--dest RECDIR \
--utype SAMPTYPE \
--urate PVAL \
--noisepercent NOISEVAL
- KSPACEDIR -
- REALIZATIONS -
- IMGNAME -
- RECDIR -
- SAMPTYPE -
- PVAL -
- NOISEVAL -
Image recovery
python -m mrina.recover --noisepercent $NOISEVAL \
--urate $PVAL \
--utype $SAMPTYPE \
--repetitions $REALIZATIONS \
--numprocesses $PROCESSES \
--fromdir $KSPACEDIR \
--recdir $RECDIR \
--maskdir $PATTERNDIR \
--method $SOLVERMODE \
--wavelet $WAVETYPE \
--savevels
Post-processing - Saving reconstructed images
python -m mrina.saveimgs --numsamples 100 \
--maindir ./ \
--recdir ./CS/ \
--maskdir ./ \
--outputdir ./OUT/01_imgs/ \
--savetrue \
--savemask \
--saverec \
--savenoise \
--savelin \
--usetrueasref \
--printlevel 1 \
--savel in \
--limits 0.0 1.0 0.0 0.9733396442983887 0.0 1.0 0.0 0.9733215407741752 \
--fluidmaskfile ia_mask.npy
For additional information on the script input parameters, type
python -m mrina.gen_samples --help
Core Dependencies
- Python 3.6.5
- PyWavelets 1.1.1
- Numpy 1.18.1
- Scipy 1.1.0
- Matplotlib 3.1.0
- [Cython]
- [opencv]
Citation
Find this useful or like this work? Cite us with:
Add Paper once published...
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mrina-0.1.0.tar.gz
(144.8 kB
view details)
Built Distributions
mrina-0.1.0-py3-none-any.whl
(46.6 kB
view details)
File details
Details for the file mrina-0.1.0.tar.gz
.
File metadata
- Download URL: mrina-0.1.0.tar.gz
- Upload date:
- Size: 144.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 95770b4d27f5a9170ecb70b29152671cd3be8469a74ebb7e61050d7a1a62b6d0 |
|
MD5 | 5f560bc58000fa1da3161b3638054352 |
|
BLAKE2b-256 | c30ebb694e360a18b05712a1efff48f677ebae1c78ed17cf49b7e341e51590ca |
File details
Details for the file mrina-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: mrina-0.1.0-py3-none-any.whl
- Upload date:
- Size: 46.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0f40660db85a9dc62dfe26151b02fb0d15f18e227d1a14dde95c105fada937eb |
|
MD5 | b1ef3518f638e139f33ffee6dbf08731 |
|
BLAKE2b-256 | a5bfe8d9af2bc26aac68fe6d74b0ec45c9549c38ef3c9154bc09957fef871214 |
File details
Details for the file mrina-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: mrina-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 732.6 kB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7d914ae9c0856b9a39e066e81db32d2a2bbdbf77b043136a2bee9cc65a0d73bc |
|
MD5 | 00dfa59c9de92ac26c76fbb5d47508e9 |
|
BLAKE2b-256 | c0b18b70c4da1b97f367c57c45ec2d6710289742a6017fdb84838eee3de2ae0d |