Skip to main content

Library for MRI noise analysis

Project description

License: MIT example workflow Documentation Status

MRIna: A library for MRI Noise Analysis

MRIna is a library for the analysis of reconstruction noise from undersampled 4D flow MRI. For additional details, please refer to the publication below:

Lauren Partin, Daniele E. Schiavazzi and Carlos A. Sing-Long Collao, An analysis of reconstruction noise from undersampled 4D flow MRI arXiv

The complete set of results from the above paper can be found at this link


Installation and documentation

You can install MRIna with pip (link to PyPI)

pip install PyWavelets mrina

For the documentation follow this link.


What you can do with MRIna.

The MRIna library provides the following functionalities.

  • It generates k-space undersampling masks of various types including Bernoulli, variable density triangular, variable density Gaussian, variable density exponential and Halton quasi-random sequences.

  • It supports arbitrary operators that implement a forward call (eval), and inverse call (adjoint), column restriction (colRestrict), shape and norm.

  • It supports various non-linear reconstruction methods including l1-norm minimization with iterative thresholding and orthogonal matching pursuit based greedy heuristics.

  • It provides a number of scripts to

    • generate ensembles of synthetic, subsampled and noisy k-space images (4 complex images);
    • reconstruct image density and velocities;
    • post-process to compute correlations, MSE, error patterns and relative errors.

Single-image examples

Example of recovering a 64x64 pixel image from its undersampled frequency information using a Gaussian mask in k-space, 75% undersampling (only 1 every 4 frequencies is retained) and adding a SNR equal to 50.

Original image 1 Wavelet transform 1
k-space mask 1 Noisy k-space measurements 1
Noiseless reconstruction: 1 Reconstruction: CS 1
Reconstruction: CSDEB 1 Reconstruction: stOMP 1

Read grayscale image

import cv2
im = cv2.imread('city.png', cv2.IMREAD_GRAYSCALE)/255.0

Generate undersampling mask

from mrina import generateSamplingMask

# Set an undesampling ratio (refers to the frequencies that are dropped)
delta = 0.75
# Generate an undersampling mask
omega = generateSamplingMask(im.shape, delta, 'bernoulli')
# Verify the undersampling ratio
nsamp = np.sum((omega == 1).ravel())/np.prod(omega.shape)
print('Included frequencies: %.1f%%' % (nsamp*100))

Compute and show wavelet representation

import pywt

waveName = 'haar'
waveMode = 'zero'
wim = pywt.coeffs_to_array(pywt.wavedec2(im, wavelet=waveName, mode=waveMode))[0]
plt.figure(figsize=(8,8))
plt.imshow(np.log(np.abs(wim)+1.0e-5), cmap='gray')
plt.axis('off')
plt.show()

Initialize a WaveletToFourier operator and generate noiseless k-space measurements

from mrina import OperatorWaveletToFourier

# Create a new operator
A = OperatorWaveletToFourier(im.shape, samplingSet=omega[0], waveletName=waveName)
yim = A.eval(wim, 1)

Noiseless recovery using l1-norm minimization

from mrina import RecoveryL1NormNoisy

# Recovery - for low values of eta it is better to use SoS-L1Ball
wimrec_cpx, _ = RecoveryL1NormNoisy(0.01, yim, A, disp=True, method='SoS-L1Ball')
# The recovered coefficients could be complex.
imrec_cpx = A.getImageFromWavelet(wimrec_cpx)
imrec = np.abs(imrec_cpx)

Generate noise in the frequency domain

# Target SNR
SNR = 50
# Signal power. The factor 2 accounts for real/imaginary parts
yim_pow = la.norm(yim.ravel()) ** 2 / (2 * yim.size)
# Set noise standard deviation
sigma = np.sqrt(yim_pow / SNR)
# Add noise
y = yim + sigma * (np.random.normal(size=yim.shape) + 1j * np.random.normal(size=yim.shape))

Image recovery with l1-norm minimization

# Set the eta parameter
eta = np.sqrt(2 * y.size) * sigma
# Run recovery with CS
wimrec_noisy_cpx, _ = RecoveryL1NormNoisy(eta, y, A, disp=True, disp_method=False, method='BPDN')
# The recovered coefficients could be complex...
imrec_noisy = np.abs(A.getImageFromWavelet(wimrec_noisy_cpx))

Estimator debiasing

# Get the support from the CS solution
wim_supp = np.where(np.abs(wimrec_noisy_cpx) > 1E-4 * la.norm(wimrec_noisy_cpx.ravel(), np.inf), True, False)
# Restrict the operator
Adeb = A.colRestrict(wim_supp)
# Solve a least-squares problem
lsqr = lsQR(Adeb)  
lsqr.solve(y[Adeb.samplingSet])
wimrec_noisy_cpx_deb = np.zeros(Adeb.wavShape,dtype=np.complex)
wimrec_noisy_cpx_deb[Adeb.basisSet] = lsqr.x[:]
# The recovered coefficients could be complex...
imrec_noisy_deb = np.abs(Adeb.getImageFromWavelet(wimrec_noisy_cpx_deb))

Image recovery with stOMP

from mrina import lsQR,OMPRecovery
# Run stOMP recovery
wimrec_noisy_cpx, _ = OMPRecovery(A, y)
# The recovered coefficients could be complex...
imrec_noisy_cpx = A.getImageFromWavelet(wimrec_noisy_cpx)
imrec_noisy = np.abs(imrec_noisy_cpx)

Script functionalities

MRIna also provides scripts to automate:

  • the generation of noisy k-space signals.
  • linear and non-linear image reconstruction.
  • post-processing of reconstructed images.

Image data

The image data should be stored on a numpy tensor in npy format with shape (r, i, n, im_1, im_2), where:

  • r is the number of image repetitions.
  • i is the image number. For 4D flow MRI you need 4 images, i.e., one density and three velocity components.
  • n has a single index.
  • im_1,im_2 are the two image dimensions.

The image file name is typically imgs_n1.npy.

Common parameters

For the example below, the following parameters are specified

FOLDER="./" # Folder name, here a single folder is used for all tasks
REALIZATIONS=3 # Number of realizations
IMGNAME="imgs_n1" # Name is the original image
SAMPTYPE="vardengauss" # Undersampling mask pattern
UVAL=0.75 # Undersampling ratio (75% frequencies dropped) 
NOISEVAL=0.1 # Noise internsity as a fraction of the average k-space signal norm
PROCESSES=1 # Number of parallel processes for reconstruction (shared memory only)
SOLVERMODE=2 # Recovery algorithm (0-CS, 1-CSDEB, 2-OMP)
METHOD="omp"  # Recovery algorithm (cs, csdeb or omp)
WAVETYPE="haar" # Selected wavelet frame
PRINTLEV=1 # Print level (the larger the more verbose)
NUMPOINTS=10 # Number of poits pairs for computing currelation

Sample generation

python -m mrina.gen_samples --fromdir $FOLDER \
                            --repetitions $REALIZATIONS \
                            --origin $IMGNAME \
                            --dest $FOLDER \
                            --utype $SAMPTYPE \
                            --urate $UVAL \
                            --noisepercent $NOISEVAL

For additional information on the script input parameters, type

python -m mrina.gen_samples --help

Image recovery from noisy and undersampled k-space signal

python -m mrina.recover --noisepercent $NOISEVAL \
                        --urate $UVAL \
                        --utype $SAMPTYPE \
                        --repetitions $REALIZATIONS \
                        --numprocesses $PROCESSES \
                        --fromdir $FOLDER \
                        --recdir $FOLDER \
                        --maskdir $FOLDER \
                        --method $SOLVERMODE \
                        --wavelet $WAVETYPE \
                        --savevels

For additional information on the script input parameters, type

python -m mrina.recover --help

Post-processing - Saving reconstructed images

python -m mrina.save_imgs --numsamples $REALIZATIONS \
                          --maindir $FOLDER \
                          --recdir $FOLDER \
                          --maskdir $FOLDER \
                          --outputdir $FOLDER \
                          --savetrue \
                          --savemask \
                          --saverec \
                          --savenoise \
                          --savelin \
                          --usetrueasref \
                          --printlevel $PRINTLEV \
                          --savelin

For additional information on the script input parameters, type

python -m mrina.saveimgs --help

Post-processing - Computing correlations

python -m mrina.correlation --numsamples $REALIZATIONS \
                            --numpts $NUMPOINTS \
                            --maxcorrpixeldist 10 \
                            --recdir $FOLDER \
                            --ptsdir $FOLDER \
                            --vencdir $FOLDER \
                            --maindir $FOLDER \
                            --printlevel 1

For additional information on the script input parameters, type

python -m mrina.correlation --help

Post-processing - Plot correlations

python -m mrina.plot_corr --noise $NOISEVAL \
                          --uval $UVAL \
                          --utype $SAMPTYPE \
                          --method $METHOD \
                          --wavelet $WAVETYPE \
                          --numsamples $REALIZATIONS \
                          --numpts $NUMPOINTS \
                          --dir $FOLDER \
                          --outputdir $FOLDER \
                          --printlevel 1

For additional information on the script input parameters, type

python -m mrina.plot_corr --help

Post-processing - Compute MSE and relative errors

python -m mrina.plot_mse --noise $NOISEVAL \
                         --uval $UVAL \
                         --utype $SAMPTYPE \
                         --method $METHOD \
                         --wavelet $WAVETYPE \
                         --numsamples $REALIZATIONS \
                         --numpts $NUMPOINTS \
                         --dir $FOLDER \
                         --outputdir $FOLDER \
                         --maskdir $FOLDER \
                         --usecompleximgs \
                         --addlinearrec \
                         --usetrueimg \
                         --printlevel 1

For additional information on the script input parameters, type

python -m mrina.plot_mse --help

Core Dependencies

Citation

Did you find this useful? Cite us using:

@misc{partin2022analysis,
      title={An analysis of reconstruction noise from undersampled 4D flow MRI}, 
      author={Lauren Partin and Daniele E. Schiavazzi and Carlos A. Sing Long},
      year={2022},
      eprint={2201.03715},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mrina-0.2.1.tar.gz (136.8 kB view details)

Uploaded Source

Built Distribution

mrina-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (627.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file mrina-0.2.1.tar.gz.

File metadata

  • Download URL: mrina-0.2.1.tar.gz
  • Upload date:
  • Size: 136.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for mrina-0.2.1.tar.gz
Algorithm Hash digest
SHA256 5a33d00048fd47ebbaf693bd4e54bfac3567df7f860318a754b7c1de57cd29dd
MD5 f4738591bd2281d1212b7a0d9c5e1923
BLAKE2b-256 f445a5a3008b2cc7652fad705cb5a121182be172a02074336c0786568c82e0b9

See more details on using hashes here.

File details

Details for the file mrina-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mrina-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f4bd998d99e7d4f6b0922b1ea259dd011e6b2bb31c5fa07c0651b5fc471d642f
MD5 556598a18e50088c85a4d2e41ac727da
BLAKE2b-256 41bca0243a22beaf8638f846138f0905a5da718bc8dfaa33a63bf0dc8c3819dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page