Skip to main content

Library for MRI noise analysis

Project description

License: MIT example workflow Documentation Status

MRIna: A library for MRI Noise Analysis

MRIna is a library for the analysis of reconstruction noise from undersampled 4D flow MRI. For additional details, please refer to the publication below:

Lauren Partin, Daniele E. Schiavazzi and Carlos A. Sing-Long Collao, An analysis of reconstruction noise from undersampled 4D flow MRI arXiv

The complete set of results from the above paper can be found at this link


Installation and documentation

You can install MRIna with pip (link to PyPI)

pip install PyWavelets mrina

For the documentation follow this link.


What you can do with MRIna.

The MRIna library provides the following functionalities.

  • It generates k-space undersampling masks of various types including Bernoulli, variable density triangular, variable density Gaussian, variable density exponential and Halton quasi-random sequences.

  • It supports arbitrary operators that implement a forward call (eval), and inverse call (adjoint), column restriction (colRestrict), shape and norm.

  • It supports various non-linear reconstruction methods including l1-norm minimization with iterative thresholding and orthogonal matching pursuit based greedy heuristics.

  • It provides a number of scripts to

    • generate ensembles of synthetic, subsampled and noisy k-space images (4 complex images);
    • reconstruct image density and velocities;
    • post-process to compute correlations, MSE, error patterns and relative errors.

Single-image examples

Example of recovering a 64x64 pixel image from its undersampled frequency information using a Gaussian mask in k-space, 75% undersampling (only 1 every 4 frequencies is retained) and adding a SNR equal to 50.

Original image 1 Wavelet transform 1
k-space mask 1 Noisy k-space measurements 1
Noiseless reconstruction: 1 Reconstruction: CS 1
Reconstruction: CSDEB 1 Reconstruction: stOMP 1

Read grayscale image

import cv2
im = cv2.imread('city.png', cv2.IMREAD_GRAYSCALE)/255.0

Generate undersampling mask

from mrina import generateSamplingMask

# Set an undesampling ratio (refers to the frequencies that are dropped)
delta = 0.75
# Generate an undersampling mask
omega = generateSamplingMask(im.shape, delta, 'bernoulli')
# Verify the undersampling ratio
nsamp = np.sum((omega == 1).ravel())/np.prod(omega.shape)
print('Included frequencies: %.1f%%' % (nsamp*100))

Compute and show wavelet representation

import pywt

waveName = 'haar'
waveMode = 'zero'
wim = pywt.coeffs_to_array(pywt.wavedec2(im, wavelet=waveName, mode=waveMode))[0]
plt.figure(figsize=(8,8))
plt.imshow(np.log(np.abs(wim)+1.0e-5), cmap='gray')
plt.axis('off')
plt.show()

Initialize a WaveletToFourier operator and generate noiseless k-space measurements

from mrina import OperatorWaveletToFourier

# Create a new operator
A = OperatorWaveletToFourier(im.shape, samplingSet=omega[0], waveletName=waveName)
yim = A.eval(wim, 1)

Noiseless recovery using l1-norm minimization

from mrina import RecoveryL1NormNoisy

# Recovery - for low values of eta it is better to use SoS-L1Ball
wimrec_cpx, _ = RecoveryL1NormNoisy(0.01, yim, A, disp=True, method='SoS-L1Ball')
# The recovered coefficients could be complex.
imrec_cpx = A.getImageFromWavelet(wimrec_cpx)
imrec = np.abs(imrec_cpx)

Generate noise in the frequency domain

# Target SNR
SNR = 50
# Signal power. The factor 2 accounts for real/imaginary parts
yim_pow = la.norm(yim.ravel()) ** 2 / (2 * yim.size)
# Set noise standard deviation
sigma = np.sqrt(yim_pow / SNR)
# Add noise
y = yim + sigma * (np.random.normal(size=yim.shape) + 1j * np.random.normal(size=yim.shape))

Image recovery with l1-norm minimization

# Set the eta parameter
eta = np.sqrt(2 * y.size) * sigma
# Run recovery with CS
wimrec_noisy_cpx, _ = RecoveryL1NormNoisy(eta, y, A, disp=True, disp_method=False, method='BPDN')
# The recovered coefficients could be complex...
imrec_noisy = np.abs(A.getImageFromWavelet(wimrec_noisy_cpx))

Estimator debiasing

# Get the support from the CS solution
wim_supp = np.where(np.abs(wimrec_noisy_cpx) > 1E-4 * la.norm(wimrec_noisy_cpx.ravel(), np.inf), True, False)
# Restrict the operator
Adeb = A.colRestrict(wim_supp)
# Solve a least-squares problem
lsqr = lsQR(Adeb)  
lsqr.solve(y[Adeb.samplingSet])
wimrec_noisy_cpx_deb = np.zeros(Adeb.wavShape,dtype=np.complex)
wimrec_noisy_cpx_deb[Adeb.basisSet] = lsqr.x[:]
# The recovered coefficients could be complex...
imrec_noisy_deb = np.abs(Adeb.getImageFromWavelet(wimrec_noisy_cpx_deb))

Image recovery with stOMP

from mrina import lsQR,OMPRecovery
# Run stOMP recovery
wimrec_noisy_cpx, _ = OMPRecovery(A, y)
# The recovered coefficients could be complex...
imrec_noisy_cpx = A.getImageFromWavelet(wimrec_noisy_cpx)
imrec_noisy = np.abs(imrec_noisy_cpx)

Script functionalities

MRIna also provides scripts to automate:

  • the generation of noisy k-space signals.
  • linear and non-linear image reconstruction.
  • post-processing of reconstructed images.

Image data

The image data should be stored on a numpy tensor in npy format with shape (r, i, n, im_1, im_2), where:

  • r is the number of image repetitions.
  • i is the image number. For 4D flow MRI you need 4 images, i.e., one density and three velocity components.
  • n has a single index.
  • im_1,im_2 are the two image dimensions.

The image file name is typically imgs_n1.npy.

Common parameters

For the example below, the following parameters are specified

FOLDER="./" # Folder name, here a single folder is used for all tasks
REALIZATIONS=3 # Number of realizations
IMGNAME="imgs_n1" # Name is the original image
SAMPTYPE="vardengauss" # Undersampling mask pattern
UVAL=0.75 # Undersampling ratio (75% frequencies dropped) 
NOISEVAL=0.1 # Noise internsity as a fraction of the average k-space signal norm
PROCESSES=1 # Number of parallel processes for reconstruction (shared memory only)
SOLVERMODE=2 # Recovery algorithm (0-CS, 1-CSDEB, 2-OMP)
METHOD="omp"  # Recovery algorithm (cs, csdeb or omp)
WAVETYPE="haar" # Selected wavelet frame
PRINTLEV=1 # Print level (the larger the more verbose)
NUMPOINTS=10 # Number of poits pairs for computing currelation

Sample generation

python -m mrina.gen_samples --fromdir $FOLDER \
                            --repetitions $REALIZATIONS \
                            --origin $IMGNAME \
                            --dest $FOLDER \
                            --utype $SAMPTYPE \
                            --urate $UVAL \
                            --noisepercent $NOISEVAL

For additional information on the script input parameters, type

python -m mrina.gen_samples --help

Image recovery from noisy and undersampled k-space signal

python -m mrina.recover --noisepercent $NOISEVAL \
                        --urate $UVAL \
                        --utype $SAMPTYPE \
                        --repetitions $REALIZATIONS \
                        --numprocesses $PROCESSES \
                        --fromdir $FOLDER \
                        --recdir $FOLDER \
                        --maskdir $FOLDER \
                        --method $SOLVERMODE \
                        --wavelet $WAVETYPE \
                        --savevels

For additional information on the script input parameters, type

python -m mrina.recover --help

Post-processing - Saving reconstructed images

python -m mrina.save_imgs --numsamples $REALIZATIONS \
                          --maindir $FOLDER \
                          --recdir $FOLDER \
                          --maskdir $FOLDER \
                          --outputdir $FOLDER \
                          --savetrue \
                          --savemask \
                          --saverec \
                          --savenoise \
                          --savelin \
                          --usetrueasref \
                          --printlevel $PRINTLEV \
                          --savelin

For additional information on the script input parameters, type

python -m mrina.saveimgs --help

Post-processing - Computing correlations

python -m mrina.correlation --numsamples $REALIZATIONS \
                            --numpts $NUMPOINTS \
                            --maxcorrpixeldist 10 \
                            --recdir $FOLDER \
                            --ptsdir $FOLDER \
                            --vencdir $FOLDER \
                            --maindir $FOLDER \
                            --printlevel 1

For additional information on the script input parameters, type

python -m mrina.correlation --help

Post-processing - Plot correlations

python -m mrina.plot_corr --noise $NOISEVAL \
                          --uval $UVAL \
                          --utype $SAMPTYPE \
                          --method $METHOD \
                          --wavelet $WAVETYPE \
                          --numsamples $REALIZATIONS \
                          --numpts $NUMPOINTS \
                          --dir $FOLDER \
                          --outputdir $FOLDER \
                          --printlevel 1

For additional information on the script input parameters, type

python -m mrina.plot_corr --help

Post-processing - Compute MSE and relative errors

python -m mrina.plot_mse --noise $NOISEVAL \
                         --uval $UVAL \
                         --utype $SAMPTYPE \
                         --method $METHOD \
                         --wavelet $WAVETYPE \
                         --numsamples $REALIZATIONS \
                         --numpts $NUMPOINTS \
                         --dir $FOLDER \
                         --outputdir $FOLDER \
                         --maskdir $FOLDER \
                         --usecompleximgs \
                         --addlinearrec \
                         --usetrueimg \
                         --printlevel 1

For additional information on the script input parameters, type

python -m mrina.plot_mse --help

Core Dependencies

Citation

Did you find this useful? Cite us using:

@misc{partin2022analysis,
      title={An analysis of reconstruction noise from undersampled 4D flow MRI}, 
      author={Lauren Partin and Daniele E. Schiavazzi and Carlos A. Sing Long},
      year={2022},
      eprint={2201.03715},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mrina-0.2.6.tar.gz (136.9 kB view details)

Uploaded Source

Built Distribution

mrina-0.2.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (627.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file mrina-0.2.6.tar.gz.

File metadata

  • Download URL: mrina-0.2.6.tar.gz
  • Upload date:
  • Size: 136.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for mrina-0.2.6.tar.gz
Algorithm Hash digest
SHA256 6ea617b2617022d13edf413a06e693efbc22b0498a2c43b719c0700205105cc4
MD5 66c2a5e79d26d25c9bb60973b7a72a4c
BLAKE2b-256 f9f8718d5af8565d495f34cabcdc646a6064dbadd84b73225b5957d17d0667d5

See more details on using hashes here.

File details

Details for the file mrina-0.2.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mrina-0.2.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9586ab6fe238027088427199e0b7cfc520671f177b2894cacc4319b488193577
MD5 0a3936c22c1d761ceb3689ac1f0a4709
BLAKE2b-256 c6ef366a7194919207a5ac4fdf60dd3258caede23ac2a6d56d3f3ab240d11059

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page