A simple common utils and models package
Project description
A simple common utils and models package for MRI analysis.
## Functions implemented in MRIUtils
Train: from mriutils.train import Train
Test: from mriutils.test import Test
### Examples
CUBE-UNet3D for LVMVM dataset: from mriutils.examples.test_ear3d_lvmvm import Test
### Datasets
ACDC: from mriutils.datasets.acdc import LoadACDC
BraTS: from mriutils.datasets.brats import LoadBraTS
MRBrainS: from mriutils.datasets.mrbrains import LoadMRBrainS
H5 files: from mriutils.datasets.lvmvm import LoadH5
MMWHS: from mriutils.datasets.mmwhs import LoadMMWHS
Other *.png datasets: from mriutils.datasets.pngs import LoadPNGS
### Utils
- Save files:
*.npy: from mriutils.utils.tonpy import SaveDataset
*.nii/*.nii.gz: from mriutils.utils.tonii import SaveNiiFile
Load and save single *.npy: from mriutils.utils.data import Data
Load *.npy datasets: from mriutils.utils.load_data import LoadData
Normalization: from mriutils.utils.norm import Normalization
Resize: from mriutils.utils.resize import Resize
Show single-layer single-channel images: from mriutils.utils.show import Show
Plot lines: from mriutils.utils.plots import Plots
Timer: from mriutils.utils.timer import Timer
### Models
2D-UNet: from mriutils.models.unet import UNet
3D-UNet: from mriutils.models.unet3d import UNet3D
CUBE-UNet3D: from mriutils.models.cube_unet3d import CUBE_UNet3D
Losses: from mriutils.models.modules.losses import Loss
Metrics: from mriutils.models.modules.metrics import Metric
### Metrics
Metrics for MRI Segmentation: from mriutils.metrics.segmentation import Segmentation
Metrics for MRI Synthesis: from mriutils.metrics.synthesis import Synthesis
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file mriutils-1.2.18.tar.gz
.
File metadata
- Download URL: mriutils-1.2.18.tar.gz
- Upload date:
- Size: 12.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: Python-urllib/3.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 468a16f1b6d592e25b7618bdf66c76fbe29b8a5ca7751be7ba14f5bd2ac2575b |
|
MD5 | 995899c5fb35bed58792456d77a1b31b |
|
BLAKE2b-256 | 9c074a745a3d24f800858093074c203adec004575b5e1b5837f67c4eee01eaf4 |