Skip to main content

MrSQM: Fast Time Series Classification with Symbolic Representations

Project description

MrSQM: Fast Time Series Classification with Symbolic Representations

MrSQM (Multiple Representations Sequence Miner) is a time series classifier. The MrSQM method can quickly extract features from multiple symbolic representations of time series and train a linear classification model with logistic regression. The method has four variants with four different feature selection strategies:

  • MrSQM-R: Random feature selection.
  • MrSQM-RS: MrSQM-R with a follow-up Chi2 test to filter less important features.
  • MrSQM-S: Pruning the all-subsequence feature space with a Chi2 bound and selecting the optimal set of top k subsequences.
  • MrSQM-SR: Random sampling of the features from the output of MrSQM-S.

Installation

Dependencies

cython >= 0.29
numpy >= 1.18
pandas >= 1.0.3
scikit-learn >= 0.22
fftw3 (http://www.fftw.org/)

Installation using pip

pip install mrsqm

Installation from source

Download the repository:

git clone https://github.com/mlgig/mrsqm.git

Move into the code directory of the repository:

cd mrsqm/mrsqm

Build package from source using:

pip install .

Example

Load data from arff files

X_train,y_train = util.load_from_arff_to_dataframe("data/Coffee/Coffee_TRAIN.arff")
X_test,y_test = util.load_from_arff_to_dataframe("data/Coffee/Coffee_TEST.arff")

Train with MrSQM

clf = MrSQMClassifier(nsax=0, nsfa=5)
clf.fit(X_train,y_train)

Make predictions

predicted = clf.predict(X_test)

Alt

More examples can be found in the example directory, including a Jupyter Notebook with detailed steps for training, prediction and explanation. The full UEA and UCR Archive can be downloaded from http://www.timeseriesclassification.com/.

This repository provides supporting code, results and instructions for reproducing the work presented in our publication:

"Fast Time Series Classification with Random Symbolic Subsequences", Thach Le Nguyen and Georgiana Ifrim https://project.inria.fr/aaltd22/files/2022/08/AALTD22_paper_5778.pdf

"MrSQM: Fast Time Series Classification with Symbolic Representations and Efficient Sequence Mining", Thach Le Nguyen and Georgiana Ifrim https://arxiv.org/abs/2109.01036

Citation

If you use this work, please cite as:

@article{mrsqm2022,
  title={Fast Time Series Classification with Random Symbolic Subsequences},
  author={Le Nguyen, Thach and Ifrim, Georgiana},
  year={2022},
  booktitle = {AALTD},
  url = {https://project.inria.fr/aaltd22/files/2022/08/AALTD22_paper_5778.pdf},
  publisher={Springer}
}
@article{mrsqm2022-extended,
  title={MrSQM: Fast Time Series Classification with Symbolic Representations and Efficient Sequence Mining},
  author={Le Nguyen, Thach and Ifrim, Georgiana},
  year={2022},
  booktitle = {arxvi},
  url = {https://arxiv.org/abs/2109.01036},
  publisher={}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mrsqm-0.0.7.tar.gz (182.0 kB view details)

Uploaded Source

Built Distributions

mrsqm-0.0.7-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

mrsqm-0.0.7-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (1.3 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

mrsqm-0.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

mrsqm-0.0.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

mrsqm-0.0.7-cp311-cp311-macosx_10_13_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

mrsqm-0.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

mrsqm-0.0.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

mrsqm-0.0.7-cp310-cp310-macosx_10_13_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

mrsqm-0.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

mrsqm-0.0.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

mrsqm-0.0.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

mrsqm-0.0.7-cp39-cp39-macosx_10_13_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

mrsqm-0.0.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

mrsqm-0.0.7-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

mrsqm-0.0.7-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

mrsqm-0.0.7-cp38-cp38-macosx_10_13_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

File details

Details for the file mrsqm-0.0.7.tar.gz.

File metadata

  • Download URL: mrsqm-0.0.7.tar.gz
  • Upload date:
  • Size: 182.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for mrsqm-0.0.7.tar.gz
Algorithm Hash digest
SHA256 919c2045acef3c298045c7e12c1ca1d44f153eeaeb6fc81565cf7a8457c33afb
MD5 e1086e21fbe4ed46041be0d9ac8bb6e8
BLAKE2b-256 7b30924447c2c945ed7cf28b3a1ade7b608362d8d4f77d770bebb51758dcd10b

See more details on using hashes here.

File details

Details for the file mrsqm-0.0.7-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for mrsqm-0.0.7-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b4743ccf908c0def97c9ee12fb7fc0e5999b0780a43f415c3d07e13decad7f01
MD5 84765467a6fbaf7ff5b033e3915925c7
BLAKE2b-256 cad3c88c95be4fbaa37a05c413a448f118bd235cf27c6b0565f42f2db05e7638

See more details on using hashes here.

File details

Details for the file mrsqm-0.0.7-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for mrsqm-0.0.7-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 119c7b0beda103967729d210dae11233e8959c4727b4207acd767f158059a3f7
MD5 74086d82ef011d1ffad7835bc51a29c2
BLAKE2b-256 62a730e0d11e2864ce077386c4fee9a88c5776544c8cdb359a7fb7786aa2e462

See more details on using hashes here.

File details

Details for the file mrsqm-0.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mrsqm-0.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0cba25034f0f1091a8f3c0bb6c682c89c7518242ae4b123dbab8d409d761feb9
MD5 e0fc0f3f76e99aedfc05425c8caf770a
BLAKE2b-256 0a7ecfd8be75862c14a506f997f9a9b966f4737050a68908ff8c33e0b68167f6

See more details on using hashes here.

File details

Details for the file mrsqm-0.0.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for mrsqm-0.0.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8029da315682024ee98cf01bf6b26d64733b4a8105c036b21aa0562c73cb3d96
MD5 b20211af60d617f0d3a547ff268fd6a3
BLAKE2b-256 ac8491036a310005bff36fdd4ac8bad4028b192f6f6ae533e2b455039614c7a9

See more details on using hashes here.

File details

Details for the file mrsqm-0.0.7-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for mrsqm-0.0.7-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5bdb302439aaabaa234052ed7d1e73c5fae5fb99abab7d53ff8670436322de98
MD5 70af61182f6bd76b0fc472d96a79f199
BLAKE2b-256 4a13df326f8216721e47f6665a993604caa3cdf93abaaaaccb83f8c41bb09b23

See more details on using hashes here.

File details

Details for the file mrsqm-0.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mrsqm-0.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9cd6dbcb4dea13dfca33e7329379ea471aac4e128383f88524d35685452386e2
MD5 4bb85586fe40dbfa925597f6842a5d21
BLAKE2b-256 61d20d3dd510aa6548d2c4f7b26f64eaf2e6b87140352848d67cc010a52a98a4

See more details on using hashes here.

File details

Details for the file mrsqm-0.0.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for mrsqm-0.0.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c41741e4cc5ffe9a1b331ea874d5833c24f82a0ba7451f522e920be55e1ad2ea
MD5 5fc44a6c38926429004df09f751b85a6
BLAKE2b-256 b9dc8a575ebaf8730982322a3ff6d0404ef60447410a4db8b46075c078bbdcaf

See more details on using hashes here.

File details

Details for the file mrsqm-0.0.7-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for mrsqm-0.0.7-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 068c98a8245cd3f7221c4483b693c72de9f69557c4e0b6d9c674b2bf4fd65420
MD5 ff6d2c9405d61fbd49d0407ccf970515
BLAKE2b-256 2c68a71488a46c2a619597e459b743b2968fcd79ebcf4b602b8227527dc363c9

See more details on using hashes here.

File details

Details for the file mrsqm-0.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mrsqm-0.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2bef1227d7f5271a245fdd18a0d3df9216b010a93589434bec1ec2ae55b7852
MD5 ad9a30b1d9f1ff5931476a83b2ed1b90
BLAKE2b-256 793c2e8d7d02ed4eca99504ab21b11667f8da7e85cb26f252a6833984bcd0ade

See more details on using hashes here.

File details

Details for the file mrsqm-0.0.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mrsqm-0.0.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c7394e9dbc4d405c56ac789390d3785affe337439c9d5fee83887755c1162f73
MD5 a54ffea4739eac22507fd4ffeeab179a
BLAKE2b-256 05df7246b2a39f83bd424f01df6dde58b27bee98d24130ee4570e91a5fadee37

See more details on using hashes here.

File details

Details for the file mrsqm-0.0.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for mrsqm-0.0.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 86eea721e52248b1ae9d7dc257fcf19534c91d6f5aba5094ce5037dbc895dd17
MD5 d02b4884d9ee4123ec6271d5b68f7fa9
BLAKE2b-256 a4a484ddec246f62b861cf1df312ce41cf988dc4334bbecdaf9aca5e255ea786

See more details on using hashes here.

File details

Details for the file mrsqm-0.0.7-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for mrsqm-0.0.7-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 bc75cbda6bcbffd595a53d66d9623c8bb84c31004c41868e148528d29c1c0372
MD5 13d8fc3c42f0f3343b54f5ae58f4c7c8
BLAKE2b-256 953487a0ee8a424b2c536a334e50ff5a678b064f02653b40f8a49d5fb4ba1fe0

See more details on using hashes here.

File details

Details for the file mrsqm-0.0.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for mrsqm-0.0.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dba9fa6548bb431c80c1d39e28571187aecfeef36ee6eb5ba7663cba0ce7568f
MD5 6051a038524b5ff867701f2407360237
BLAKE2b-256 6d930961264d794e94cd040e59337e9058021e59e8fa03d79031583db2570804

See more details on using hashes here.

File details

Details for the file mrsqm-0.0.7-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for mrsqm-0.0.7-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1cb817ec53a98559f84cc1c4ec9929b8873d767f47ae86ca97262b3f4895f347
MD5 b6293e05f472d9d247c7512aee7c02ff
BLAKE2b-256 7f59b2e0ad59cc97511fe1a96781593b5efb9d654ae98df5cd37a184dcbc4ad7

See more details on using hashes here.

File details

Details for the file mrsqm-0.0.7-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for mrsqm-0.0.7-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ec4cbd771956825bb9bf07031cb15ed9f1ce6dde308f3dabf7c722d852f612ee
MD5 a33520928fb8e4d0871632a8755b337c
BLAKE2b-256 21dadf6a2e97aba16266a408e8b0c35e09c1f429087fdb379a9657cd1bae0dcf

See more details on using hashes here.

File details

Details for the file mrsqm-0.0.7-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for mrsqm-0.0.7-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d35d6694426b517f42ef681e0bdbe62eff40bcfd25b0a8a6f53bd378402a6422
MD5 eb6bc29a2413cd0f295313f2042d4a85
BLAKE2b-256 09868e1b51e155120fc951ddb105a368b8dbff55312ebcef6b18574250dbe490

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page