Skip to main content

makina-runway

Project description

Software Development Kit

  • support only python

Goal

  • mlflow를 사용하는 사용자들이 import만 변경하여 runway에 logging하는 방식을 제공한다.
  • runway sdk 는 mlflow 의 interface/arguments 를 최대한 맞추는 방향으로 구현해야 한다.
# import mlflow
from runway import mlflow

with mlflow.start_run() as run:
    mlflow.log_param()

mlflow.sklearn.save_model()

Install

  • makina 사내 pypi server에서 install 합니다.
  1. pip install

    # pip install
    pip install --index-url http://pypi.makina.rocks/simple/ --trusted-host pypi.makina.rocks runway
    
    pyproject.toml의 version 수정 후 테스트 시
    pip install --index-url http://pypi.makina.rocks/simple/ --trusted-host pypi.makina.rocks mrx-runway=={{version}}
    
  2. poetry 사용

    1. pyproject.toml에 사내 pypi source 추가

      [[tool.poetry.source]]
      name = "mrx"
      url = "http://pypi.makina.rocks/simple/"
      default = true
      
    2. poetry add & install

      poetry add runway
      poetry install
      

Publish

  • 정식 version은 runway repo의 tag로 관리됨
  • pyproject.toml 파일의 version은 developer의 test를 위한 pseudo-version 임
  • local에서 publish test는 make command 사용
    # version patch, build & publish 한꺼번에 수행
    make publish-dev
    

How to test in local environment

  • sdk 개발시 local 에서 unit test 실행방식은 아래와 같습니다. utest 시에는 다양한 mlframework package 가 설치되니, 별도의 명령어보다는 makefile 의 recipe 를 사용하시기 바랍니다.
make utest
```bash

## How to develop
- sdk 개발을 위한 `python` 환경을 하나  생성합니다.
- edit 모드로 sdk를 설치 합니다.
```bash
pip install -e .
  • /etc/hosts에 minio관련 host를 추가합니다.
  • misc/gw.yaml, misc/vs.yaml을 수정하여 배포합니다.
  • prepare_develop.sh파일에 BACKEND_URL, MLFLOW_URL, MINIO_URL를 환경에 맞게 수정합니다.
  • prepare_develop.sh를 실행합니다.
./prepare_develop.sh
  • 실행
DEPLOY_TARGET=dev python examples/sample_log_model.py

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mrx_runway-0.0.2409290634-cp39-cp39-win_amd64.whl (54.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

mrx_runway-0.0.2409290634-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

File details

Details for the file mrx_runway-0.0.2409290634-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for mrx_runway-0.0.2409290634-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 65fb4613d80e400baa811c59ebdd05181220f8921accdc24b1547188b130f86e
MD5 affad76d8ba220d2109949c974655e1b
BLAKE2b-256 54637d33a782ed18594ae251b3443bd378454ff5fc3d55575b1fa9035a73ebfa

See more details on using hashes here.

File details

Details for the file mrx_runway-0.0.2409290634-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mrx_runway-0.0.2409290634-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b6eb5e2a6b20fe3e0e6228c2577b3460704f4703030aa6f440f790f849d65171
MD5 2cebfc7bbd5b30d6104b0f6f09e1f47d
BLAKE2b-256 06fcc2d9698a5f2f8079aba4b5d03f49ec2599f9b9ea4b51d426aeb4f10a7334

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page