Skip to main content

Access, Deisotope, and Charge Deconvolute Mass Spectra

Project description

https://raw.githubusercontent.com/mobiusklein/ms_deisotope/master/docs/_static/logo.png

Documentation | PYPIBADGE | GHAB

A Library for Deisotoping and Charge State Deconvolution For Mass Spectrometry

This library combines brainpy and ms_peak_picker to build a toolkit for MS and MS/MS data. The goal of these libraries is to provide pieces of the puzzle for evaluating MS data modularly. The goal of this library is to combine the modules to streamline processing raw data.

Deconvolution

The general-purpose averagine-based deconvolution procedure can be called by using the high level API function deconvolute_peaks, which takes a sequence of peaks, an averagine model, and a isotopic goodness-of-fit scorer:

import ms_deisotope

deconvoluted_peaks, _ = ms_deisotope.deconvolute_peaks(peaks, averagine=ms_deisotope.peptide,
                                                       scorer=ms_deisotope.MSDeconVFitter(10.))

The result is a deisotoped and charge state deconvoluted peak list where each peak’s neutral mass is known and the fitted charge state is recorded along with the isotopic peaks that gave rise to the fit.

Refer to the Documentation for a deeper description of isotopic pattern fitting.

Averagine

An “Averagine” model is used to describe the composition of an “average amino acid”, which can then be used to approximate the composition and isotopic abundance of a combination of specific amino acids. Given that often the only solution available is to guess at the composition of a particular m/z because there are too many possible elemental compositions, this is the only tractable solution.

This library supports arbitrary Averagine formulae, but the Senko Averagine is provided by default: {“C”: 4.9384, “H”: 7.7583, “N”: 1.3577, “O”: 1.4773, “S”: 0.0417}

from ms_deisotope import Averagine
from ms_deisotope import plot

peptide_averagine = Averagine({"C": 4.9384, "H": 7.7583, "N": 1.3577, "O": 1.4773, "S": 0.0417})

plot.draw_peaklist(peptide_averagine.isotopic_cluster(1266.321, charge=1))
ms_deisotope includes several pre-defined averagines (or “averagoses” as may be more appropriate):
  1. Senko’s peptide - ms_deisotope.peptide

  2. Native N- and O-glycan - ms_deisotope.glycan

  3. Permethylated glycan - ms_deisotope.permethylated_glycan

  4. Glycopeptide - ms_deisotope.glycopeptide

  5. Sulfated Glycosaminoglycan - ms_deisotope.heparan_sulfate

  6. Unsulfated Glycosaminoglycan - ms_deisotope.heparin

Please see the Documentation for more information on mass spectrum data file reading/writing, peak sets, and lower-level signal processing tools.

Installing

ms_deisotope uses PEP 517 and 518 build system definition and isolation to ensure all of its compile-time dependencies are installed prior to building. Normal installation should work with pip, and pre-built wheels are available for Windows.

$ pip install ms_deisotope

C Extensions

ms_deisotope and several of its dependencies use C extensions to make iterative operations much faster. If you plan to use this library on a large amount of data, I highly recommend you ensure they are installed:

>>> import ms_deisotope
>>> ms_deisotope.DeconvolutedPeak
<type 'ms_deisotope._c.peak_set.DeconvolutedPeak'>

Building C extensions from source requires a version of Cython >= 0.27.0

Compiling C extensions requires that numpy, brain-isotopic-distribution, and ms_peak_picker be compiled and installed prior to building ms_deisotope:

pip install numpy
pip install -v brain-isotopic-distribution ms_peak_picker
pip install -v ms_deisotope

If these libraries are not installed, ms_deisotope will fall back to using pure Python implementations, which are much slower.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ms_deisotope-0.0.39-cp310-cp310-win_amd64.whl (6.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

ms_deisotope-0.0.39-cp39-cp39-win_amd64.whl (6.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

ms_deisotope-0.0.39-cp38-cp38-win_amd64.whl (6.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

File details

Details for the file ms_deisotope-0.0.39-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ms_deisotope-0.0.39-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3f0148f81208c8d3b1b14c0d4b2e372f9bc443ab965936874638259686701bfb
MD5 7793c40cad6c0948c117e83df9f802bf
BLAKE2b-256 c7f8242f49fe07b66967e86a90ebfa1a5d0bd91ff303f0fbc25c1d88301a3f5d

See more details on using hashes here.

File details

Details for the file ms_deisotope-0.0.39-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for ms_deisotope-0.0.39-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1a34a39f4a5e3e4705a38aa890701969080f923298041da9070cba20ecbdfa5e
MD5 a70f0f480b7dd568edb33c2df56ee7aa
BLAKE2b-256 2dd1495e8c489d72074c83002e5d1332124ac01bbbd085b7585d256d809fe4ab

See more details on using hashes here.

File details

Details for the file ms_deisotope-0.0.39-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for ms_deisotope-0.0.39-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6696166edeaf32512266b1c2f4b2aa6fd7d150aaed515561094e2f56ec023b64
MD5 29d72a8874f91b2ef590f08336e96506
BLAKE2b-256 348f4440552465ee27b40e413980f69c3773a3103b7310a2dbb3ee033606dc54

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page