Skip to main content

This package provides a Python implementation of calculating spectral entropy, entropy similarity, and Flash entropy search for mass spectrometry data.

Project description

DOI DOI Test MS Entropy package Documentation Status

If you have any questions, feel free to send me E-mails: mail@yli.one. If you find this package useful, please consider citing the following papers:

Li, Y., Fiehn, O. Flash entropy search to query all mass spectral libraries in real time, Nat Methods 20, 1475-1478 (2023). https://doi.org/10.1038/s41592-023-02012-9

Li, Y., Kind, T., Folz, J. et al. Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification, Nat Methods 18, 1524-1531 (2021). https://doi.org/10.1038/s41592-021-01331-z

Theoritical Background

Spectral entropy is an useful property to measure the complexity of a spectrum. It is inspried by the concept of Shannon entropy in information theory. (ref)

Entropy similarity, which measured spectral similarity based on spectral entropy, has been shown to outperform dot product similarity in compound identification. (ref)

The calculation of entropy similarity can be accelerated by using the Flash Entropy Search algorithm. (ref)

How to use this package

This repository contains the source code to calculate spectral entropy and entropy similarity in various programming languages. Also implemented the Flash Entropy Search algorithm in Python.

For Python users

A detailed tutorial is available here: https://msentropy.readthedocs.io

Installation

pip install ms_entropy

Usage of Classical entropy functions

import numpy as np
import ms_entropy as me

peaks_query = np.array([[69.071, 7.917962], [86.066, 1.021589], [86.0969, 100.0]], dtype = np.float32)
peaks_reference = np.array([[41.04, 37.16], [69.07, 66.83], [86.1, 999.0]], dtype = np.float32)

# Calculate entropy similarity.
entropy = me.calculate_spectral_entropy(peaks_query, clean_spectrum = True, min_ms2_difference_in_da = 0.05)
print(f"Spectral entropy is {entropy}.")

# Calculate unweighted entropy similarity.
unweighted_similarity = me.calculate_unweighted_entropy_similarity(peaks_query, peaks_reference, ms2_tolerance_in_da = 0.05)
print(f"Unweighted entropy similarity: {unweighted_similarity}.")

# Calculate entropy similarity.
similarity = me.calculate_entropy_similarity(peaks_query, peaks_reference, ms2_tolerance_in_da = 0.05)
print(f"Entropy similarity: {similarity}.")

Usage of Flash Entropy Search

from ms_entropy import FlashEntropySearch
entropy_search = FlashEntropySearch()
entropy_search.build_index(spectral_library)
entropy_similarity = entropy_search.search(
    precursor_mz=query_spectrum_precursor_mz, peaks=query_spectrum_peaks)

For R users

A document is available here: https://cran.r-project.org/web/packages/msentropy/msentropy.pdf

Installation

install.packages("msentropy")

Usage

library(msentropy)

# Peaks A
mz_a <- c(169.071, 186.066, 186.0769)
intensity_a <- c(7.917962, 1.021589, 100.0)
peaks_a <- matrix(c(mz_a, intensity_a), ncol = 2, byrow = FALSE)

# Peaks B
mz_b <- c(120.212, 169.071, 186.066)
intensity_b <- c(37.16, 66.83, 999.0)
peaks_b <- matrix(c(mz_b, intensity_b), ncol = 2, byrow = FALSE)

# Calculate spectral entropy
spectral_entropy_a <- calculate_spectral_entropy(clean_spectrum(peaks_a, min_ms2_difference_in_da = 0.02))
spectral_entropy_b <- calculate_spectral_entropy(clean_spectrum(peaks_b, min_ms2_difference_in_da = 0.02))

# Calculate entropy similarity
entropy_similarity <- calculate_entropy_similarity(peaks_a, peaks_b, ms2_tolerance_in_da = 0.02)

For C/C++ users

Usage

#include "SpectralEntropy.h"

// Calculate spectral entropy
{
    int spec_a_len = 3;
    float spec_a[3][2] = {{169.071, 7.917962}, {186.066, 1.021589}, {186.0769, 100.0}};
    
    // The parameters for clean_spectrum function
    int normalize_intensity = 1;
    float ms2_tolerance_in_da = 0.02, ms2_tolerance_in_ppm = -1;
    float min_mz= -1, max_mz = -1;
    float noise_threshold = 0.01;
    int max_peak_num = -1;

    // Alway clean the spectrum before calculating spectral entropy
    spec_a_len = clean_spectrum(*spec_a, spec_a_len, min_mz, max_mz, noise_threshold, max_peak_num, ms2_tolerance_in_da, ms2_tolerance_in_ppm, max_peak_num, normalize_intensity);

    // Calculate spectral entropy
    float spectral_entropy = calculate_spectral_entropy(*spec_a, spec_a_len);

    printf("Spectral Entropy: %f\n", spectral_entropy);
}

// Calculate entropy similarity
{
    int spec_a_len = 3;
    float spec_a[3][2] = {{169.071, 7.917962}, {186.066, 1.021589}, {186.0769, 100.0}};

    int spec_b_len = 3;
    float spec_b[3][2] = {{120.212, 37.16}, {169.071, 66.83}, {186.066, 999.0}};

    // The parameters for calculate_entropy_similarity function.
    int clean_spectra = 1;
    float ms2_tolerance_in_da = 0.02, ms2_tolerance_in_ppm = -1;
    float min_mz= -1, max_mz = -1;
    float noise_threshold = 0.01;
    int max_peak_num = -1;

    // Calculate entropy similarity, the data in spec_a and spec_b will modified.
    float similarity = calculate_entropy_similarity(*spec_a, spec_a_len, *spec_b, spec_b_len, ms2_tolerance_in_da, ms2_tolerance_in_ppm, clean_spectra, min_mz, max_mz, noise_threshold, max_peak_num);
    printf("Entropy Similarity: %f\n", similarity);
}

An example is available in folder languages/c folder and Example.c, CMakeLists.txt

For JavaScript users

An example is available in folder languages/javascript folder and example.js

Also, refer to MSViewer repository for a working example of using this package in a web application.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ms_entropy-1.3.3.tar.gz (269.6 kB view details)

Uploaded Source

Built Distributions

ms_entropy-1.3.3-cp312-cp312-win_amd64.whl (155.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

ms_entropy-1.3.3-cp312-cp312-win32.whl (140.0 kB view details)

Uploaded CPython 3.12 Windows x86

ms_entropy-1.3.3-cp312-cp312-musllinux_1_1_x86_64.whl (777.7 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

ms_entropy-1.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (776.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ms_entropy-1.3.3-cp312-cp312-macosx_11_0_arm64.whl (159.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

ms_entropy-1.3.3-cp312-cp312-macosx_10_9_x86_64.whl (166.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

ms_entropy-1.3.3-cp312-cp312-macosx_10_9_universal2.whl (280.0 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

ms_entropy-1.3.3-cp311-cp311-win_amd64.whl (155.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

ms_entropy-1.3.3-cp311-cp311-win32.whl (139.6 kB view details)

Uploaded CPython 3.11 Windows x86

ms_entropy-1.3.3-cp311-cp311-musllinux_1_1_x86_64.whl (772.7 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

ms_entropy-1.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (774.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ms_entropy-1.3.3-cp311-cp311-macosx_11_0_arm64.whl (159.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

ms_entropy-1.3.3-cp311-cp311-macosx_10_9_x86_64.whl (166.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

ms_entropy-1.3.3-cp311-cp311-macosx_10_9_universal2.whl (279.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

ms_entropy-1.3.3-cp310-cp310-win_amd64.whl (155.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

ms_entropy-1.3.3-cp310-cp310-win32.whl (140.0 kB view details)

Uploaded CPython 3.10 Windows x86

ms_entropy-1.3.3-cp310-cp310-musllinux_1_1_x86_64.whl (716.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

ms_entropy-1.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (703.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ms_entropy-1.3.3-cp310-cp310-macosx_11_0_arm64.whl (159.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

ms_entropy-1.3.3-cp310-cp310-macosx_10_9_x86_64.whl (166.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

ms_entropy-1.3.3-cp310-cp310-macosx_10_9_universal2.whl (279.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

ms_entropy-1.3.3-cp39-cp39-win_amd64.whl (155.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

ms_entropy-1.3.3-cp39-cp39-win32.whl (140.6 kB view details)

Uploaded CPython 3.9 Windows x86

ms_entropy-1.3.3-cp39-cp39-musllinux_1_1_x86_64.whl (718.9 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

ms_entropy-1.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (706.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ms_entropy-1.3.3-cp39-cp39-macosx_11_0_arm64.whl (160.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

ms_entropy-1.3.3-cp39-cp39-macosx_10_9_x86_64.whl (167.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

ms_entropy-1.3.3-cp39-cp39-macosx_10_9_universal2.whl (281.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

ms_entropy-1.3.3-cp38-cp38-win_amd64.whl (155.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

ms_entropy-1.3.3-cp38-cp38-win32.whl (140.7 kB view details)

Uploaded CPython 3.8 Windows x86

ms_entropy-1.3.3-cp38-cp38-musllinux_1_1_x86_64.whl (731.3 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

ms_entropy-1.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (713.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ms_entropy-1.3.3-cp38-cp38-macosx_11_0_arm64.whl (159.3 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

ms_entropy-1.3.3-cp38-cp38-macosx_10_9_x86_64.whl (166.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

ms_entropy-1.3.3-cp38-cp38-macosx_10_9_universal2.whl (279.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

ms_entropy-1.3.3-cp37-cp37m-win_amd64.whl (155.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

ms_entropy-1.3.3-cp37-cp37m-win32.whl (139.7 kB view details)

Uploaded CPython 3.7m Windows x86

ms_entropy-1.3.3-cp37-cp37m-musllinux_1_1_x86_64.whl (668.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

ms_entropy-1.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (661.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

ms_entropy-1.3.3-cp37-cp37m-macosx_10_9_x86_64.whl (167.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file ms_entropy-1.3.3.tar.gz.

File metadata

  • Download URL: ms_entropy-1.3.3.tar.gz
  • Upload date:
  • Size: 269.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ms_entropy-1.3.3.tar.gz
Algorithm Hash digest
SHA256 08fe799e237af12f7e5a3bcea8ae83e8940dc46f75c46fe2a4c717db4a75215c
MD5 a3d540f81d0aa2363511353aa533ebfb
BLAKE2b-256 bc07b4b6d36d57bf65b921c3b23a898dcf10537b1458fed81905354de216fd33

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 00681beabcdd2dad7067221260f111d6f19553e9c4868ae12443e2e9c8a09fc9
MD5 3cb2174d4ee5e9b390c9e045e05a1975
BLAKE2b-256 c93bfb539c4c445a2bbd9525caf355fcc742b9e3cc6546205c27c09713eb0a3b

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp312-cp312-win32.whl.

File metadata

  • Download URL: ms_entropy-1.3.3-cp312-cp312-win32.whl
  • Upload date:
  • Size: 140.0 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ms_entropy-1.3.3-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 9a54d737ac3a445217d98154e0d7a3af2753ec572d3ad9f15532db373054babd
MD5 3b7657b97114b999bb7a7fe9b31d7b73
BLAKE2b-256 4da1ccb76161008959b3a3c760b1bbdd89f99808182324ab35a6b2570a81034e

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8f9808296760f584f8a968c9e34b01972d2662eec0c079118c26afa42268b59d
MD5 d6d83148ff5daa10856f88de6e50e09b
BLAKE2b-256 ed58901682d62160b1f6a3930d38969699d1b9b1aed7efc7a7ff0bf1638d0a19

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ace1ce1e9b34f18b9ca61b43762989f82968d8f000edf393b9415efcc12e725f
MD5 c806172eaa3536c84a0e1259f95f07fe
BLAKE2b-256 8b806afcdedaabe4a8b5d4bf0d2b2b976e87ba917875a66fd8fad3c784420c54

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0865260dc2f7f24b9333985432f63483068be2250d6c135a731827caedfcaf38
MD5 5603d76c114561bc2717eb1c321897d3
BLAKE2b-256 d01db3e7f1eaab2997dfa6decf1e7ac578cb86ccdf007580d068d62cf62360b6

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d6b4023417b856c4b3bcbcd2767fe6e5165348340675635304a10f636e14358d
MD5 eeece07a94abb7f346e6d83b0fd2b176
BLAKE2b-256 d552063c37b1f415a0eb1302216e48f8f87f948b13380fe352e54cacab15ba49

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cf3e3931faef1cfa1cba3f8142ce091a4e777cc73a878e13eff543f63ffe5fe1
MD5 f5b8555d46ec4e4a14eede5b67f2a959
BLAKE2b-256 b4a85a15716e7349eacd141d1f6bd12f01d86d380ae0996eea09b91cb6aa2d42

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 31eb25f2273ff96a77ad72d4c743da303b6d9205a62359150e6e38442f7eaccc
MD5 7d91323372b1e2f5f6c51a71ee5e15eb
BLAKE2b-256 a7b2b142388e56f76f7b62f3ff5b90557f3eccd4b6ef72e8909f0bdcd09f031a

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: ms_entropy-1.3.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 139.6 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ms_entropy-1.3.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 8b74e7ac5bac9bbefec81b8cf0a9720cd1f386e860c01c1e12674be8c21da6a8
MD5 9d97b7d8afe09ddc734cea5b683bfdae
BLAKE2b-256 38508f67a7901b0791d8d46fb26d8b6374bbaec26aa3a51758232140cf9bb7a9

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d61dfedcb8d292f8b4d4042408c22da4ef6843b26c3af8990b92fec152e121e0
MD5 874a92dd687404ee866080af85d77431
BLAKE2b-256 e696ab02819e79ee8f10adb5a9605f2a2fa67fa7670908ed91399197857443a9

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d7b933f913da6b9ad00ef4842f33c6ca93a519285acae307a6c59ba6e0b132f3
MD5 c6efaff20416e1696bccd7c3378777cc
BLAKE2b-256 e0c8b199885c075367eb5682ac74c30e71d86d5513d25efe95956cd7c3b5c1c0

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 79275a53cc764cf2bab3f0777886316b7d5e62f9651a010f4103dc3750446286
MD5 0c935f5448380f0b4a8fa46eaf9970ba
BLAKE2b-256 4cb830118aa62f410dad6b07feb09841c19befd2728b5db1d7d222f5492ce037

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a4792d1ece46ddd93e7985ebdc4d809c13dbcd74fee265035c653cc493222c4e
MD5 5b4aabbb82c9a250612cf2feb77d94f1
BLAKE2b-256 b02d6a9c3e19b1ca3860ead322fafb50afa893f60fa586769d42ee107613607b

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e42285aa055049c4d040f55ef3343409923aded8313455d0a517e3a4b7a49745
MD5 bc0346c3a8ca087a9b1c997582754990
BLAKE2b-256 38f2f4401cd940bdf804ca3fd50b56f948a92517bf2c7782a16fe20714bea266

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 26645a85f9ed2c54b051e8a108d6946139d5ca0d3444aaf719d85b70cfc418cb
MD5 c11472e4befeed1fb13c7b8d3ee65768
BLAKE2b-256 c21197e0beaffb54b9c797a8971cd510e026c7466515c6f1321d636ddb91ab58

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: ms_entropy-1.3.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 140.0 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ms_entropy-1.3.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 1eda79156bcb64a530df6170311654723d2b20ccae176e80ef885ba3a9bf739d
MD5 654ce8f885004c5b3647ce8b7492c51f
BLAKE2b-256 54fff897de3450964bd3cda54ab655f7b679195a8f8317062fc4c42477445c48

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ccb345c06d07c05202fba6d1a75e9bf0a0614b90cc701ff8be1d390ae0a4e92c
MD5 67515b92bae6f2416a6005c6744c4231
BLAKE2b-256 5ab545124d405fac86c0e09b06f236e14b7024780c0cacd919d52470881b04cb

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9886f595196f4148f0bb8ad79bf50b73ab081312923be57b60f10ff2e0080b08
MD5 ae61f9e93290119affa08b2049de29f8
BLAKE2b-256 2f4dbdfde7cd63c30fc0bbb309707a0c3782e3088243ec2097bbae80cf4479e6

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d4c73646825d32474a01131afc2fa15b9892d37d368d084a2e42a4754a823750
MD5 aa3a413174723e3214f4ba9f9d6a39f5
BLAKE2b-256 64144f3eccc11191de1e3b3e085e39da5ad81aff241dd3ec984a9b19b11fca12

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 663d907f0119e21623bf2d3c2ca31ab02d40a96c9a936bafca38100b81b27a05
MD5 44ae298ca3497ae855d8f0ce0c01dc56
BLAKE2b-256 e0f6d15e0d2c250127486514e251ddfa6fde83393753254696851f85008683ea

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1411934a80b8cf95ab3c53f15466a0366a1a6d271c76df66de4b2687d2f1948a
MD5 3a8f6efb64eda4c7abfac5ad769ad807
BLAKE2b-256 2e64892193aa26a530b371c7ddfb169fd0b85acb7250eb6927947bec241e4618

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ms_entropy-1.3.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 155.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ms_entropy-1.3.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 17d466a2f1dcaa040dea0eb57e9d185cd05c09d87312ddb05c0c63db1e87e66c
MD5 bcf82e399c7b8689210106291117d44a
BLAKE2b-256 de8ee3b93d88cd2cc70b2d8d3f628e3eda9bc8a5c2729b075049937d6dd753e5

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: ms_entropy-1.3.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 140.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ms_entropy-1.3.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e3002a4eb8e25d3137d4cb288978a8b5fa52fc241679d23c04ebc4de732854b1
MD5 ab2c00dba29b6b748a100ed65dd716d2
BLAKE2b-256 fffeb9ede7c29c12a5a2fb4044df2f9e33130298cc5ceabdea92276768ebde07

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 325eb43072f395208d07475078d5f7de1f08ceb008c39ff12398f32dd1da9f88
MD5 2ed46d106a9d01dbf5baab0dfef60a57
BLAKE2b-256 dbee99dab71245f73fe1a9bf6252265d2227974d0eac17c0e3d43d2818640544

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf35a5fb4b5574c9d82ccc3c51f6c0e1afd556df5c60428c88dc1d927bac60e0
MD5 9d4c3b8428e6de4be6b46b4afdc4c50e
BLAKE2b-256 0f12c9ea85abc66db53d16db66e8828c5a5dc250e695dd3f34210945247ed001

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 71c04417629fdbda930a7ee6f13ccdb42653046a59525a028e6b012a979c6d5e
MD5 2b1271c36e3038dc96285bcd79ed9252
BLAKE2b-256 39313bacf830ec61fdb3f6155b9ee05c411190ff7deedecbd0f8d12f49343219

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4ba82919e785cea9dc39f610216ca385854f373245a0fc64b92a7605df0d711c
MD5 3eb122fa890ef2b417c6ae84070677fd
BLAKE2b-256 e6ee6faa28841e55b935ab75fe87ee6052ed1d816ed2cff2743eb28a93c1a9e3

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f81155f57b3d889292ce2baff8c3d85fd9942434ffa0f0bf799133a18b3daac1
MD5 a3446696d754809b66838c1f9292223a
BLAKE2b-256 22e5dca080d143bf69bceeaaf8221bfac61c4ae9d2a01384111a6c3162c85100

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ms_entropy-1.3.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 155.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ms_entropy-1.3.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e244653f3d8b3b35674c1aa7cf8e2e0a633f3bfa72a0888dcc0ad99803f1167e
MD5 c36319253e83fffaf60e4b7c3584fde0
BLAKE2b-256 697084bebb4308d666aa3fa338f4db7afbddf5b6e02f02c7d39447dcacb501a4

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: ms_entropy-1.3.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 140.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ms_entropy-1.3.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 df651aaf4045602ee21620fc9a1652a1f27308ec92897bfb8de41cdf4d9a2c5c
MD5 2e8a5d9745f8dd52069cb6b56baeab5f
BLAKE2b-256 bd29b8429a030fff64569ff9cc7c141f04fb8e48cb9d1e74c4c02d9fe42ba866

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 73159a34397be164b7cd5b5d27673bb0e5f9c3fb8b3eb2916362784e4a52eb30
MD5 cfd67b3d55e022df046e666ef93c1883
BLAKE2b-256 af9072017406dd097751b470b01eaf1ed265caf588db5bd06b6af0bfc9c5896e

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bbc6263f05f6b6f896c2d7efc6d11b592e2289af2db400d0fca36de387f76b92
MD5 29ddf4af6ce816dba37218feb08e55bb
BLAKE2b-256 86faaa7e740d922ee40f013eae6885fc10a5c227dab05e8d091c26087974308f

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 51426a1674bea4e9bdaa3fea295e27c06a80862d617a2205682fd816849ac255
MD5 9f349c827dcaf6781875d19f48104a65
BLAKE2b-256 a3ba9c486701bddc601af1b50e9092b0f032a3388f636b43bed6ac4e6ec5725f

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5404981ae07e7e598a382ab9082d449b275730a93020ed11f9be6134085d4b2a
MD5 425bfb40753e0c9e261f68f71a3d2804
BLAKE2b-256 85971b37d72bd7244f1be210adffadab9559501244d07819023c82f77938806f

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 905c7b92b66878dcb1ac19dc7fd8d7857c1ac233518f1cc92282bd9573951600
MD5 29fbf647853075eeef4613a31a9efb2b
BLAKE2b-256 a7be94d77b4da04d7fcc43df2f2dd5cca739eec811f1451e0cd05806287b4303

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5dbda41ce1adfb3fa1a67169c844aecc02569e8c656ca31d9dd344a19f25e2f6
MD5 4e1878b183712b07945dd67351b6e03f
BLAKE2b-256 b9b8f2bc6307c2d4fb8e5414e59b5d4bef3112d1ab3cb74d44bb2e751edab35e

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: ms_entropy-1.3.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 139.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ms_entropy-1.3.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 847e6939c50f89fe51574d88f54eee0337808fc4e20a0a6df2a1ac0768632653
MD5 09ffe984ef0d3c35c2b5c131625977d1
BLAKE2b-256 0523fb722e4ea24b291ab016c2dade11e1ff099b3bcf408dfb7666eeb9bc65d3

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b44d9a29c032f3ece50bfb7441bdf30a7763054e3cb43c55f5bb2eaf76f70234
MD5 33f7532a8156972059a315ecd672da3e
BLAKE2b-256 9aeaa2c8ce102cdcbd1a28df6a13273cb8a8f1b15906931f35eb2a94af819fcf

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9df4268485ba2a09c1116655a1712140298f434eaa2a71f0c5a25fbfa0c0c3cc
MD5 fde2616677180497b6a1df090b37f6e9
BLAKE2b-256 982e92451b2d47d07a3ab32dba1a332f08c9f57d99425a7e816a01e884490437

See more details on using hashes here.

File details

Details for the file ms_entropy-1.3.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms_entropy-1.3.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 153ff32978a3b298465063f781b21426b1f9e407b4e77fe449827cb1c477653b
MD5 79bf53788f1ab15dbc1cc60556b21a67
BLAKE2b-256 fe36667bff8687e82809f5c24fac5b769b1ec8f0cfc0b28fc74c3ca9d7b48e28

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page