Skip to main content

MS2PIP: Accurate and versatile peptide fragmentation spectrum prediction.

Project description

https://github.com/compomics/ms2pip_c/raw/releases/img/ms2pip_logo_1000px.png

https://img.shields.io/github/v/release/compomics/ms2pip_c?include_prereleases&style=flat-square https://img.shields.io/pypi/v/ms2pip?style=flat-square https://img.shields.io/github/actions/workflow/status/compomics/ms2pip_c/test.yml?branch=releases&label=tests&style=flat-square https://img.shields.io/github/actions/workflow/status/compomics/ms2pip_c/build_and_publish.yml?style=flat-square https://img.shields.io/github/issues/compomics/ms2pip_c?style=flat-square https://img.shields.io/github/last-commit/compomics/ms2pip_c?style=flat-square https://img.shields.io/github/license/compomics/ms2pip_c?style=flat-square https://img.shields.io/twitter/follow/compomics?style=social

MS²PIP: MS2 Peak Intensity Prediction - Fast and accurate peptide fragmentation spectrum prediction for multiple fragmentation methods, instruments and labeling techniques.


About

MS²PIP is a tool to predict MS2 peak intensities from peptide sequences. The result is a predicted peptide fragmentation spectrum that accurately resembles its observed equivalent. These predictions can be used to validate peptide identifications, generate proteome-wide spectral libraries, or to select discriminative transitions for targeted proteomics. MS²PIP employs the XGBoost machine learning algorithm and is written in Python and C.

https://raw.githubusercontent.com/compomics/ms2pip/v4.0.0/img/mirror-DVAQIFNNILR-2.png

Mirror plot of an observed (top) and MS²PIP-predicted (bottom) spectrum for the peptide DVAQIFNNILR/2.

You can install MS²PIP on your machine by following the installation instructions. For a more user-friendly experience, go to the MS²PIP web server. There, you can easily upload a list of peptide sequences, after which the corresponding predicted MS2 spectra can be downloaded in multiple file formats. The web server can also be contacted through the RESTful API.

The MS³PIP Python application can perform the following tasks:

  • predict-single: Predict fragmentation spectrum for a single peptide and optionally visualize the spectrum.

  • predict-batch: Predict fragmentation spectra for a batch of peptides.

  • predict-library: Predict a spectral library from protein FASTA file.

  • correlate: Compare predicted and observed intensities and optionally compute correlations.

  • get-training-data: Extract feature vectors and target intensities from observed spectra for training.

MS²PIP supports a wide range of PSM input formats and spectrum output formats, and includes pre-trained models for multiple fragmentation methods, instruments and labeling techniques. See Usage for more information.

Citations

If you use MS²PIP for your research, please cite the following publication:

  • Declercq, A., Bouwmeester, R., Chiva, C., Sabidó, E., Hirschler, A., Carapito, C., Martens, L., Degroeve, S., Gabriels, R. (2023). Updated MS²PIP web server supports cutting-edge proteomics applications. Nucleic Acids Research doi:10.1093/nar/gkad335

Prior MS²PIP publications:

  • Gabriels, R., Martens, L., & Degroeve, S. (2019). Updated MS²PIP web server delivers fast and accurate MS2 peak intensity prediction for multiple fragmentation methods, instruments and labeling techniques. Nucleic Acids Research doi:10.1093/nar/gkz299

  • Degroeve, S., Maddelein, D., & Martens, L. (2015). MS²PIP prediction server: compute and visualize MS2 peak intensity predictions for CID and HCD fragmentation. _Nucleic Acids Research, 43(W1), W326–W330. doi:10.1093/nar/gkv542

  • Degroeve, S., & Martens, L. (2013). MS²PIP: a tool for MS/MS peak intensity prediction. Bioinformatics (Oxford, England), 29(24), 3199–203. doi:10.1093/bioinformatics/btt544

Please also take note of, and mention, the MS²PIP version you used.

Full documentation

The full documentation, including installation instructions, usage examples, and the command-line and Python API reference, can be found at ms2pip.readthedocs.io.

Contributing

Bugs, questions or suggestions? Feel free to post an issue in the issue tracker or to make a pull request. Any contribution, small or large, is welcome!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ms2pip-4.0.0.dev8.tar.gz (5.5 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

ms2pip-4.0.0.dev8-cp311-cp311-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.11Windows x86-64

ms2pip-4.0.0.dev8-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

ms2pip-4.0.0.dev8-cp311-cp311-macosx_10_9_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

ms2pip-4.0.0.dev8-cp310-cp310-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.10Windows x86-64

ms2pip-4.0.0.dev8-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

ms2pip-4.0.0.dev8-cp310-cp310-macosx_10_9_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

ms2pip-4.0.0.dev8-cp39-cp39-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.9Windows x86-64

ms2pip-4.0.0.dev8-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

ms2pip-4.0.0.dev8-cp39-cp39-macosx_10_9_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

ms2pip-4.0.0.dev8-cp38-cp38-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.8Windows x86-64

ms2pip-4.0.0.dev8-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

ms2pip-4.0.0.dev8-cp38-cp38-macosx_10_9_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file ms2pip-4.0.0.dev8.tar.gz.

File metadata

  • Download URL: ms2pip-4.0.0.dev8.tar.gz
  • Upload date:
  • Size: 5.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for ms2pip-4.0.0.dev8.tar.gz
Algorithm Hash digest
SHA256 2a464e00135c875c12c98f6853a4487e193a0730b5bd94f82a44e8d5fb21a7bb
MD5 bbe6e66c9957d9386a0cae3f717661e7
BLAKE2b-256 7df67d0b83559b1281915035a5c4d9a0b04de3501fad549ff69fd9b1a12a8003

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev8-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev8-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8da7c7694738234d19f9d59acaddb4137d26167f5165b6ea4dc417505cdac51d
MD5 eab258e3196001f1261d76be6eb44a1b
BLAKE2b-256 00f1f9d1bd4f536946dfdf5a9d39420b7dc3c56b4ba1e331eb2a1a6def8f8a31

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev8-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev8-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e0d99f1574e7d2b4e61e55c6476ac5c7bf3d0d5a6a4786a3517d2818c50aa458
MD5 ff1139e00d2d90237c69fd0915f8dc8c
BLAKE2b-256 b1e61175db600d41d3c34bfcda51b2939a82b9badb11bb710411fc30ee526922

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev8-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev8-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 caf37aa82d9f002dd81d530fe1b56670a505be0bc289b0e3309a0486f44e96d1
MD5 71b12afaf8049bd5c2b86bbcf04e16bc
BLAKE2b-256 0ccc8870620cfddb69aad3d4c2ff824e9806cb90f6d6292a0d0e7944331d2d4a

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev8-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0893848ba1755af532f94e9732d9898c973768bad2546b0c10a2d68395043ce3
MD5 5187a2db45f85806c9144eae6e13e402
BLAKE2b-256 8108c82ef7cf1c2f612fc12488ca47bbd2086b3a3189c9be15919f91d2baf7cb

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev8-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev8-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bb052204cd2467239a9ccbc846c3892ee3f07972465bebada303b5478ad61c92
MD5 7d4ae227c47df40dfc5923a7208f70a9
BLAKE2b-256 5f32da25421663fc7b4116431b04904b4e26a72702a3be72e3b7e9d282baddcc

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev8-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev8-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8804d4bd7eb880a473a11260b99fd4df1b0521d4bd0e043e3a3e887492410dce
MD5 cde509f98a9f6c61a39ea9bf0f53ed15
BLAKE2b-256 433aebacccfae87e79a54d150fe584a1a48eae0cc565661a185ee1b705cfec40

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev8-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ms2pip-4.0.0.dev8-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 13.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for ms2pip-4.0.0.dev8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8f6aacb35ebcff4ec38b8516c25e47b32a651f79878874fd0bd25f06ab1cf79e
MD5 38c2e79ca968a50ca1eefc3855590ced
BLAKE2b-256 5dcbb30787737b14f9fb8c6c25e94f40d4766c95e725060faf498e43d8a4f384

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev8-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev8-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f4c057f592b1e3b309dd67c88c1179a4309e5ff13f55c9836ff9b2bd0266339
MD5 21a2f88fb46e22f310d2bc29a68398b1
BLAKE2b-256 ea8c588c3d3e8f3de1d5cfdcb13722ba034bc3234f18ef576878e01063fdfc00

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev8-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev8-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cb1adac0dd1eec8729868f1e57dc166bc7997acc2774233c021237bcffb683b1
MD5 bd6927570102fb97555e2fc716278976
BLAKE2b-256 553bbe2e6591d92fe72897080c33ebe75ae38bd2f9fe970501413de868193b92

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev8-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ms2pip-4.0.0.dev8-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 13.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for ms2pip-4.0.0.dev8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1d08a2899be080b34258d5c0ba40ae92627854e22349373fd4da2db7b518dd1e
MD5 70c4d90ccb7c6a62ccd0c159ad5d6959
BLAKE2b-256 dda3e4c87f976f7365c18fd2883bb99c989528060ae9ebbe7249ffd605da95e5

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev8-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev8-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06280a467d28ffc88025e5853ad2612852cdf1fee3fae9b05ed436a6cecef2f4
MD5 5b25c70a1574f3e8819cb137199bd385
BLAKE2b-256 b34ece8b2565307066d7e79dab52c0ebf417dd9765770e8e4785d14e01f31e1d

See more details on using hashes here.

File details

Details for the file ms2pip-4.0.0.dev8-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ms2pip-4.0.0.dev8-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dde3f7f76ca0e5669cdacc27c4a7c88fa729362a2ec9c64de016a38966c8c71a
MD5 7d45df86f0e5b31e303cc2e8ab2c0258
BLAKE2b-256 1dd30c6f392ffbb5961b974d9cdc70471270692f03725b1fa730b4ebad47103f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page