Skip to main content

Analyze XPS report files generated by Mastersizer 2000

Project description

msanalyzer

Analyze XPS report files generated by Mastersizer 2000.

Aplicativo web (PT-BR)

O msanalyzer possui uma versão mais simples em formato de aplicativo web. Deste modo, é extremamente fácil usar o programa.

Basta acessar o site msanalyzer.netlify.app e utilizar! Não é necessário nenhum tipo de instalação.

Qualquer dúvida sobre a utilização do site, por favor, entre em contato.

Interface gráfica (PT-BR)

Para usar a interface gráfica, baixe o arquivo msanalyzer_gui_win64.zip disponível na página de releases e descompacte-o.

Dentro da pasta descompactada, haverá um arquivo chamado msanalyzer_gui.exe. Execute-o para iniciar o programa.

Obs: Ao abrir o executável pela primeira vez, pode ser que o programa demore para iniciar. Isto é normal: o interpretador do Python precisa ser descompactado; este procedimento não deve demorar mais que 20 segundos. Apenas espere e não se preocupe :)

Qualquer dúvida sobre a utilização do programa, sugestões de melhoria ou desejo de colaborar com o código, sinta-se a vontade para entrar em contato!

Seleção e visualização de modelos

Models

Gráfico de um único arquivo

Models

Gráfico de vários arquivos

Models

Janela principal

Options

Command line interface

The easiest way to use msanalyzer is to download the .exe file on release pages. After downloading it, put the XPS report in the same folder as the EXE. Rename the XPS to "ms_input.xps" and double-click "msanalyzer.exe".

This will create a directory called "mastersizer_output" with the following files:

  • output_curve_data.xlsx: diameter, volume fraction and cumulative volume fraction data in a Excel file;
  • output_curves.svg: Plot of volume fraction and cumulative volume fraction data (example below); RRB fitted model
  • output_curve_data.txt: diameter, volume fraction and cumulative volume fraction data in a TXT file;
  • output_RRB_model_parameters.txt: RRB model parameters fitted to input data;
  • output_RRB_model.svg: Cumulative volume fraction plot of data and RRB fitted model (example below). RRB fitted model

This program can also be used from command line with several options. Inside CMD or PowerShell, enter

./msanalyzer.exe --help

to see the available options.

dev install

To get a development enviroment running, do the following:

1 - Clone the repo

git clone https://github.com/marcusbfs/msanalyzer.git

2 - Create a virtual environment and activate it

python -m venv msanalyzer_venv
.\msanalyzer_venv\Script\activate.bat

3 - Download requirements files

pip install -r requirements.txt

4 - Run a test

python msanalyzer.py ms_input.xps

Contributing

Feel free to contribute anyway you want to :)

Authors

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

msanalyzer-3.7.1.tar.gz (96.5 kB view hashes)

Uploaded Source

Built Distribution

msanalyzer-3.7.1-py3-none-any.whl (100.9 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page