A python port of Justin Braaten's msslib: https://github.com/gee-community/msslib
Project description
msslib
The aim of msslib
is to make it easy to work with Landsat MSS data in Earth
Engine. It assembles image collections across the five satellites that carried
the MSS sensor, filters images for quality, calculates TOA reflectance, and
calculates the MSScvm
cloud mask.
Python Guide
Installation
pip install msslib
Usage
from msslib import msslib
From here you should be able to use msslib in python following the below guide.
Guide
Module import
Include the following line at the top of every script to import the library.
var msslib = require('users/jstnbraaten/modules:msslib/msslib.js');
Example workflow
This example demonstrates how to assemble an MSS image collection, view thumbnails to assess quality, reassemble collection to remove bad images, transform the images to TOA reflectance, add an NDVI band, and apply QA and cloud/shadow masks.
Import the msslib
module.
var msslib = require('users/jstnbraaten/modules:msslib/msslib.js');
Get an MSS image collection filtered by region and day of year, as well as default settings for cloud and RMSE.
var mssDnCol = msslib.getCol({
aoi: ee.Geometry.Point([-122.239, 44.018]),
doyRange: [170, 240]
});
View image thumbnails to get a sense for quality.
msslib.viewThumbnails(mssDnCol);
Retrieve an image collection again, but this time exclude bad images identified previously.
var mssDnCol = msslib.getCol({
aoi: ee.Geometry.Point([-122.239, 44.018]),
doyRange: [170, 240],
excludeIds: ['LM10480291974234GDS03', 'LM20490291975185GDS03']
});
Convert the collection to top of atmosphere reflectance.
var mssToaCol = mssDnCol.map(msslib.calcToa);
Add the NDVI transformation as a band to all images in the collection.
mssToaCol = mssToaCol.map(msslib.addNdvi);
Apply the MSS clear-view-mask (MSScvm) to all images in the collection to remove clouds and cloud shadows.
mssToaCol = mssToaCol.map(msslib.applyMsscvm);
Apply QA band to all images in the collection.
mssToaCol = mssToaCol.map(msslib.applyQaMask);
Components
Constants
- visDn :
Object
A dictionary of false color visualization parameters for MSS DN images.
- visRad :
Object
A dictionary of false color visualization parameters for MSS radiance images.
- visToa :
Object
A dictionary of false color visualization parameters for MSS TOA reflectance images.
- visNdvi :
Object
A dictionary of visualization parameters for MSS NDVI images.
Functions
- getWrs1GranuleGeom(granuleId) >
ee.Dictionary
Get the geometry for a given WRS-1 granule. Returns a dictionary with three elements: 'granule' a
ee.Feature
, granule 'centroid' aee.Geometry
, and granule 'bounds'ee.Geometry
with a 40 km buffer. Note that it will only return results for granules that intersect land on the descending path.- getCol(params) >
ee.ImageCollection
Assembles a Landsat MSS image collection from USGS Collection 1 T1 and T2 images acquired by satellites 1-5. Removes L1G images and images without a complete set of reflectance bands. Additional default and optional filtering criteria are applied, including by bounds, geometric error, cloud cover, year, and day of year. All image bands are named consistently: ['green', 'red', 'red_edge', 'nir', 'BQA']. Adds 'wrs' property to all images designating them as 'WRS-1' or 'WRS-2'.
- viewThumbnails(col, params)
Prints image collection thumbnails to the console with accompanying image IDs for use in quickly evaluating a collection. The image IDs can be recorded and used as entries in the
params.excludeIds
list of themsslib.getCol()
function to exclude the given image(s).- calcRad(img) >
ee.Image
Converts DN values to radiance.
- calcToa(img) >
ee.Image
Converts DN values to TOA reflectance.
- addNdvi(img) >
ee.Image
Adds NDVI transformation as a band ('ndvi') to the input image.
- addTc(img) >
ee.Image
Adds Tasseled Cap indices brightness ('tcb'), greenness ('tcg'), yellowness ('tcy'), and angle ('tca') to the input image. See Kauth and Thomas, 1976
- addQaMask(img) >
ee.Image
Adds the 'BQA' quality band as mask band ('BQA_mask') indicating good (1) and bad (0) pixels. Learn more about the 'BQA' band.
- applyQaMask(img) >
ee.Image
Applies the 'BQA' quality band to an image as a mask. It masks out cloud pixels and those exhibiting radiometric saturation, as well pixels associated with missing data. Cloud identification is limited to mostly thick cumulus clouds; note that snow and very bright surface features are often mislabeled as cloud. Radiometric saturation in MSS images usually manifests as entire or partial image pixel rows being highly biased toward high values in a single band, which when visualized, can appear as tinted red, green, or blue. Learn more about the 'BQA' band.
- addMsscvm(img) >
ee.Image
Adds the MSScvm band ('msscvm') to the input image. Value 0 designates pixels as clear, 1 as clouds, and 2 as shadows. Learn about MSScvm.
- applyMsscvm(img) >
ee.Image
Applies the MSScvm mask to the input image, i.e., pixels identified as cloud or cloud shadow are masked out. Learn about MSScvm.
visDn : Object
A dictionary of false color visualization parameters for MSS DN images.
Kind: global constant
Example
// Get an MSS image.
var mssDnImg = msslib.getCol({
aoi: ee.Geometry.Point([-122.239, 44.018]),
yearRange: [1987, 1987],
doyRange: [170, 240],
wrs: '2'
}).first();
// Use with Map.addLayer().
Map.centerObject(mssDnImg, 8);
Map.addLayer(mssDnImg, msslib.visDn, 'From Map.addLayer()');
// Use with ee.Image.visualize().
var visImg = mssDnImg.visualize(msslib.visDn);
Map.addLayer(visImg, null, 'From ee.Image.visualize()');
visRad : Object
A dictionary of false color visualization parameters for MSS radiance images.
Kind: global constant
Example
// Get an MSS image.
var mssDnImg = msslib.getCol({
aoi: ee.Geometry.Point([-122.239, 44.018]),
yearRange: [1987, 1987],
doyRange: [170, 240],
wrs: '2'
}).first();
// Convert DN to radiance.
var mssRadImg = msslib.calcRad(mssDnImg);
// Use with Map.addLayer().
Map.centerObject(mssRadImg, 8);
Map.addLayer(mssRadImg, msslib.visRad, 'From Map.addLayer()');
// Use with ee.Image.visualize().
var visImg = mssRadImg.visualize(msslib.visRad);
Map.addLayer(visImg, null, 'From ee.Image.visualize()');
visToa : Object
A dictionary of false color visualization parameters for MSS TOA reflectance images.
Kind: global constant
Example
// Get an MSS image.
var mssDnImg = msslib.getCol({
aoi: ee.Geometry.Point([-122.239, 44.018]),
yearRange: [1987, 1987],
doyRange: [170, 240],
wrs: '2'
}).first();
// Convert DN to TOA.
var mssToaImg = msslib.calcToa(mssDnImg);
// Use with Map.addLayer().
Map.centerObject(mssToaImg, 8);
Map.addLayer(mssToaImg, msslib.visToa, 'From Map.addLayer()');
// Use with ee.Image.visualize().
var visImg = mssToaImg.visualize(msslib.visToa);
Map.addLayer(visImg, null, 'From ee.Image.visualize()');
visNdvi : Object
A dictionary of visualization parameters for MSS NDVI images.
Kind: global constant
Example
// Get an MSS image.
var mssDnImg = msslib.getCol({
aoi: ee.Geometry.Point([-122.239, 44.018]),
yearRange: [1987, 1987],
doyRange: [170, 240],
wrs: '2'
}).first();
// Convert DN to TOA and add NDVI band.
var mssNdviImg = msslib.addNdvi(msslib.calcToa(mssDnImg));
// Use with Map.addLayer().
Map.centerObject(mssNdviImg, 8);
Map.addLayer(mssNdviImg, msslib.visNdvi, 'From Map.addLayer()');
// Use with ee.Image.visualize().
var visImg = mssNdviImg.visualize(msslib.visNdvi);
Map.addLayer(visImg, null, 'From ee.Image.visualize()');
getWrs1GranuleGeom(granuleId) > ee.Dictionary
Get the geometry for a given WRS-1 granule. Returns a dictionary with three
elements: 'granule' a ee.Feature
, granule 'centroid' a ee.Geometry
, and
granule 'bounds' ee.Geometry
with a 40 km buffer. Note that it will only
return results for granules that intersect land on the descending path.
Kind: global function
Param | Type | Description |
---|---|---|
granuleId | string |
The PPPRRR granule ID. |
Example
// Get granule geometry for WRS-1 path/row granule 049030.
var granuleGeom = msslib.getWrs1GranuleGeom('049030');
// Print the results.
print(granuleGeom);
// Display the results.
var granule = ee.Feature(granuleGeom.get('granule'));
var centroid = ee.Geometry(granuleGeom.get('centroid'));
var bounds = ee.Geometry(granuleGeom.get('bounds'));
Map.centerObject(centroid, 8);
Map.addLayer(bounds, {color: 'blue'}, 'Bounds');
Map.addLayer(granule, {color: 'black'}, 'Granule');
Map.addLayer(centroid, {color: 'red'}, 'Centroid');
getCol(params) > ee.ImageCollection
Assembles a Landsat MSS image collection from USGS Collection 1 T1 and T2 images acquired by satellites 1-5. Removes L1G images and images without a complete set of reflectance bands. Additional default and optional filtering criteria are applied, including by bounds, geometric error, cloud cover, year, and day of year. All image bands are named consistently: ['green', 'red', 'red_edge', 'nir', 'BQA']. Adds 'wrs' property to all images designating them as 'WRS-1' or 'WRS-2'.
Kind: global function
Returns: ee.ImageCollection
- An MSS image collection.
Param | Type | Default | Description |
---|---|---|---|
params | Object |
An object that provides filtering parameters. | |
[params.aoi] | ee.Geometry |
|
The geometry to filter images by intersection; those intersecting the geometry are included in the collection. |
[params.maxRmseVerify] | number |
0.5 |
The maximum geometric RMSE of a given image allowed in the collection, provided in units of pixels (60 m), conditioned on the 'GEOMETRIC_RMSE_VERIFY' image property. |
[params.maxCloudCover] | number |
50 |
The maximum cloud cover of a given image allowed in the collection, provided as a percent, conditioned on the 'CLOUD_COVER' image property. |
[params.wrs] | string |
"1&2" |
An indicator for what World Reference System types to allow in the collection. MSS images from Landsat satellites 1-3 use WRS-1, while 4-5 use WRS-2. Options include: '1' (WRS-1 only), '2' (WRS-2 only), and '1&2' (both WRS-1 and WRS-2). |
[params.yearRange] | Array |
[1972, 2000] |
An array with two integers that define the range of years to include in the collection. The first defines the start year (inclusive) and the second defines the end year (inclusive). Ex: [1972, 1990]. |
[params.doyRange] | Array |
[1, 365] |
An array with two integers that define the range of days to include in the collection. The first defines the start day of year (inclusive) and the second defines the end day of year (inclusive). Note that the start day can be less than the end day, which indicates that the day range crosses the new year. Ex: [180, 240] (dates for northern hemisphere summer images), [330, 90] (dates for southern hemisphere summer images). |
[params.excludeIds] | Array |
|
A list of image IDs to filter out of the image collection, given as the value of the image's 'LANDSAT_SCENE_ID' property. |
Example
// Filter by geometry intersection, cloud cover, and geometric RMSE.
var mssDnCol = msslib.getCol({
aoi: ee.Geometry.Point([-122.239, 44.018]),
maxCloudCover: 25,
maxRmseVerify: 0.25
});
// Filter by geometry intersection, year range, and day of year.
var mssDnCol = msslib.getCol({
aoi: ee.Geometry.Point([-122.239, 44.018]),
yearRange: [1975, 1980],
doyRange: [170, 240]
});
// Filter by geometry intersection and exclude two images by ID.
var mssDnCol = msslib.getCol({
aoi: ee.Geometry.Point([-122.239, 44.018]),
excludeIds: ['LM10490291972246AAA04', 'LM10480291973113AAA02']
});
viewThumbnails(col, params)
Prints image collection thumbnails to the console with accompanying image
IDs for use in quickly evaluating a collection. The image IDs can be recorded
and used as entries in the params.excludeIds
list of the msslib.getCol()
function to exclude the given image(s).
Kind: global function
Param | Type | Default | Description |
---|---|---|---|
col | ee.ImageCollection |
MSS DN image collection originating from the msslib.getCol() function. |
|
params | Object |
An object that provides visualization parameters. | |
[params.unit] | string |
"toa" |
An indicator for what units to use in the display image. Use: 'dn' (raw digital number), 'rad' (radiance), or 'toa' (TOA reflectance). The selected unit will be calculated on-the-fly. |
[params.display] | string |
"nir|red|green" |
An indicator for how to display the image thumbnail. Use 'nir|red|green' (RGB) or 'ndvi' (grayscale). Default visualization parameters for color stretch are applied. |
[params.visParams] | Object |
|
A custom visualization parameter dictionary as described here. If set, overrides the params.display option and default. |
Example
// Get an MSS image collection.
var mssDnCol = msslib.getCol({
aoi: ee.Geometry.Point([-122.239, 44.018]),
doyRange: [170, 240]
});
// View DN image thumbnails in the console.
viewThumbnails(mssDnCol, {unit: 'dn'});
calcRad(img) > ee.Image
Converts DN values to radiance.
Kind: global function
Param | Type | Description |
---|---|---|
img | ee.Image |
MSS DN image originating from the msslib.getCol() function. |
Example
// Get an MSS image collection.
var mssDnCol = msslib.getCol({
aoi: ee.Geometry.Point([-122.239, 44.018]),
doyRange: [170, 240]
});
// Convert DN to radiance for a single image.
var mssRadImg = msslib.calcRad(mssDnCol.first());
// Convert DN to radiance for all images in a collection.
var mssRadCol = mssDnCol.map(msslib.calcRad);
calcToa(img) > ee.Image
Converts DN values to TOA reflectance.
Kind: global function
Param | Type | Description |
---|---|---|
img | ee.Image |
MSS DN image originating from the msslib.getCol() function. |
Example
// Get an MSS image collection.
var mssDnCol = msslib.getCol({
aoi: ee.Geometry.Point([-122.239, 44.018]),
doyRange: [170, 240]
});
// Convert DN to TOA for a single image.
var mssToaImg = msslib.calcToa(mssDnCol.first());
// Convert DN to TOA for all images in a collection.
var mssToaCol = mssDnCol.map(msslib.calcToa);
addNdvi(img) > ee.Image
Adds NDVI transformation as a band ('ndvi') to the input image.
Kind: global function
Param | Type | Description |
---|---|---|
img | ee.Image |
MSS image originating from the msslib.getCol() function. It is recommended that the image be in units of radiance or TOA reflectance (see msslib.calcRad() and msslib.calcToa() ). |
Example
// Get an MSS image collection.
var mssDnCol = msslib.getCol({
aoi: ee.Geometry.Point([-122.239, 44.018]),
doyRange: [170, 240]
});
// Convert DN to TOA for all images in a collection.
var mssToaCol = mssDnCol.map(msslib.calcToa);
// Add NDVI band to each image in a collection.
var mssToaColNdvi = mssToaCol.map(msslib.addNdvi);
addTc(img) > ee.Image
Adds Tasseled Cap indices brightness ('tcb'), greenness ('tcg'), yellowness ('tcy'), and angle ('tca') to the input image. See Kauth and Thomas, 1976
Kind: global function
Param | Type | Description |
---|---|---|
img | ee.Image |
MSS image originating from the msslib.getCol() function. It is recommended that the image be in units of radiance or TOA reflectance (see msslib.calcRad() and msslib.calcToa() ). |
Example
// Get an MSS image collection.
var mssDnCol = msslib.getCol({
aoi: ee.Geometry.Point([-122.239, 44.018]),
doyRange: [170, 240]
});
// Convert DN to TOA for all images in a collection.
var mssToaCol = mssDnCol.map(msslib.calcToa);
// Add Tasseled Cap bands to each image in a collection.
var mssToaColTc = mssToaCol.map(msslib.addTc);
addQaMask(img) > ee.Image
Adds the 'BQA' quality band as mask band ('BQA_mask') indicating good (1) and bad (0) pixels. Learn more about the 'BQA' band.
Kind: global function
Param | Type | Description |
---|---|---|
img | ee.Image |
MSS image originating from the msslib.getCol() function. |
Example
// Get an MSS image collection.
var mssDnCol = msslib.getCol({
aoi: ee.Geometry.Point([-122.239, 44.018]),
doyRange: [170, 240]
});
// Select a single image.
var mssDnImg = mssDnCol.filter(
ee.Filter.eq('LANDSAT_SCENE_ID', 'LM30490291982193AAA03')).first();
// Add BQA mask band to the single image.
var mssDnImgQaMask = msslib.addQaMask(mssDnImg);
// Display the results.
Map.centerObject(mssDnImgQaMask, 9);
Map.addLayer(mssDnImgQaMask, msslib.visDn, 'DN image');
Map.addLayer(mssDnImgQaMask, {
bands: ['BQA_mask'],
min: 0,
max: 1,
palette: ['grey', 'green']
}, 'BQA mask');
// Add BQA mask band to all images in collection.
var mssDnColQaMask = mssDnCol.map(msslib.addQaMask);
print(mssDnColQaMask.limit(5));
applyQaMask(img) > ee.Image
Applies the 'BQA' quality band to an image as a mask. It masks out cloud pixels and those exhibiting radiometric saturation, as well pixels associated with missing data. Cloud identification is limited to mostly thick cumulus clouds; note that snow and very bright surface features are often mislabeled as cloud. Radiometric saturation in MSS images usually manifests as entire or partial image pixel rows being highly biased toward high values in a single band, which when visualized, can appear as tinted red, green, or blue. Learn more about the 'BQA' band.
Kind: global function
Param | Type | Description |
---|---|---|
img | ee.Image |
MSS image originating from the msslib.getCol() function. |
Example
// Get an MSS image collection.
var mssDnCol = msslib.getCol({
aoi: ee.Geometry.Point([-122.239, 44.018]),
doyRange: [170, 240]
});
// Select a single image.
var mssDnImg = mssDnCol.filter(
ee.Filter.eq('LANDSAT_SCENE_ID', 'LM30490291982193AAA03')).first();
// Apply BQA mask to the single image.
var mssDnImgQaMask = msslib.applyQaMask(mssDnImg);
// Display the results.
Map.centerObject(mssDnImgQaMask, 9);
Map.setOptions('SATELLITE');
Map.addLayer(mssDnImg, msslib.visDn, 'DN image');
Map.addLayer(mssDnImgQaMask, msslib.visDn, 'DN image masked');
// Apply BQA mask to all images in collection.
var mssDnColQaMask = mssDnCol.map(msslib.applyQaMask);
print(mssDnColQaMask.limit(5));
addMsscvm(img) > ee.Image
Adds the MSScvm band ('msscvm') to the input image. Value 0 designates pixels as clear, 1 as clouds, and 2 as shadows. Learn about MSScvm.
Kind: global function
Param | Type | Description |
---|---|---|
img | ee.Image |
MSS TOA image originating from msslib.getCol() and msslib.calcToa() . |
Example
// Get an MSS image collection.
var mssDnCol = msslib.getCol({
aoi: ee.Geometry.Point([-122.239, 44.018]),
doyRange: [170, 240],
yearRange: [1983, 1986],
wrs: '2'
});
// Convert DN to TOA.
var mssToaCol = mssDnCol.map(msslib.calcToa);
// Select a single image.
var mssToaImg = mssToaCol.filter(
ee.Filter.eq('LANDSAT_SCENE_ID', 'LM50450301986215AAA03')).first();
// Add MSScvm band to the single image.
var mssToaImgMsscvm = msslib.addMsscvm(mssToaImg);
// Display the results.
Map.centerObject(mssToaImgMsscvm, 9);
Map.addLayer(mssToaImgMsscvm, msslib.visToa, 'TOA image');
Map.addLayer(mssToaImgMsscvm, {
bands: ['msscvm'],
min: 0,
max: 2,
palette: ['27ae60', 'FFFFFF', '000000']
}, 'MSScmv');
// Add MSScvm band to all images in collection.
var mssToaColMsscvm = mssToaCol.map(msslib.addMsscvm);
print(mssToaColMsscvm.limit(5));
applyMsscvm(img) > ee.Image
Applies the MSScvm mask to the input image, i.e., pixels identified as cloud or cloud shadow are masked out. Learn about MSScvm.
Kind: global function
Param | Type | Description |
---|---|---|
img | ee.Image |
MSS TOA image originating from msslib.getCol() and msslib.calcToa() . |
Example
// Get an MSS image collection.
var mssDnCol = msslib.getCol({
aoi: ee.Geometry.Point([-122.239, 44.018]),
doyRange: [170, 240],
yearRange: [1983, 1986],
wrs: '2'
});
// Convert DN to TOA.
var mssToaCol = mssDnCol.map(msslib.calcToa);
// Select a single image.
var mssToaImg = mssToaCol.filter(
ee.Filter.eq('LANDSAT_SCENE_ID', 'LM50450301986215AAA03')).first();
// Apply MSScvm to the single image.
var mssToaImgMsscvm = msslib.applyMsscvm(mssToaImg);
// Display the results.
Map.centerObject(mssToaImgMsscvm, 9);
Map.setOptions('SATELLITE');
Map.addLayer(mssToaImg, msslib.visToa, 'TOA image');
Map.addLayer(mssToaImgMsscvm, msslib.visToa, 'TOA image masked');
// Apply MSScvm to all images in collection.
var mssToaColMsscvm = mssToaCol.map(msslib.applyMsscvm);
print(mssToaColMsscvm.limit(5));
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file msslib-0.1.2.tar.gz
.
File metadata
- Download URL: msslib-0.1.2.tar.gz
- Upload date:
- Size: 5.0 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a0e161bd4f8add39555de50237e5c652eb66be93f398a30466d36ea240f91a0b |
|
MD5 | f6461553efbb72f6a2719cb4d4b1c597 |
|
BLAKE2b-256 | 3a38f67f016055a6f86ba375aef293b3c78d134c3409536f744db04b78ab6846 |
File details
Details for the file msslib-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: msslib-0.1.2-py3-none-any.whl
- Upload date:
- Size: 19.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0df1b43ea53f3265085911de2be9bef6eb50007adf7081d7bd398bd3fca26982 |
|
MD5 | b634a1e02071c978048459d03b3dd63e |
|
BLAKE2b-256 | 8c1f46e50b2a9b60c134e96c02d04d35b24d37a504f57197f1b19853a25aa689 |