Skip to main content

Stransverse mass computation as a numpy ufunc.

Project description

https://img.shields.io/pypi/v/mt2.svg https://img.shields.io/pypi/pyversions/mt2.svg https://github.com/tpgillam/mt2/workflows/Build/badge.svg?branch=master

This package may be used to evaluate MT2 in all its variants. This includes both symmetric and asymmetric MT2. MT2 is also known as the “stransverse mass”.

This package provides an interface to the bisection algorithm of http://arxiv.org/abs/1411.4312, via an implementation detailed below. The variable MT2 itself is described here. Related information may be found in papers relating to MT2 linked from here.

Getting started

Install from pip:

pip install mt2

One can then compute MT2 as follows; here for the “symmetric” case, where both invisible particles have the same mass:

from mt2 import mt2

# The units of all quantities are the same, e.g. GeV
val = mt2(
    100, 410, 20,  # Visible 1: mass, px, py
    150, -210, -300,  # Visible 2: mass, px, py
    -200, 280,  # Missing transverse momentum: x, y
    100, 100)  # Invisible 1 mass, invisible 2 mass
print("Expected mT2 = 412.628.  Computed mT2 = ", val)

Examples

Vectorisation

The mt2 function supports broadcasting over its arguments if they are array-like. For example, one could scan over a grid of invisible particle masses like so:

n1 = 20
n2 = 20
mass_1 = numpy.linspace(10, 200, n1).reshape((-1, 1))
mass_2 = numpy.linspace(10, 200, n2).reshape((1, -1))

# `val` has shape (n1, n2)
val = mt2(
    100, 410, 20,  # Visible 1: mass, px, py
    150, -210, -300,  # Visible 2: mass, px, py
    -200, 280,  # Missing transverse momentum: x, y
    mass_1, mass_2)  # Invisible 1 mass, invisible 2 mass

Note on performance

With full precision, the main reason to use vectorisation as above is convenience. The time spent in the C++ MT2 calculation is somewhat larger than the overhead introduced by a Python for loop. Vectorising can give a runtime reduction of ⪅30% in this case.

However, the benefit can be more significant when using a lower precision. This corresponds to a larger value for the desired_precision_on_mt2 argument. This is because less time is spent in C++, so proportionally the Python overhead of a for loop is more significant.

Toy MC

A fun example using a toy Monte-Carlo simulation can be viewed in this notebook

Other notes

For further information, see the documentation:

help(mt2)

Also exported is mt2_ufunc. This is the raw implementation as a numpy ufunc. Usage is the same as for mt2, but it supports some additional arguments, like where. The reader should refer to the numpy documentation for a description of these.

Implementation

The underlying implementation of the Lester-Nachman algorithm used in this package is by Rupert Tombs, found in src/mt2_bisect.h. It provides results consistent with the implementation provided with http://arxiv.org/abs/1411.4312, but is 3x to 4x faster. Note that this does not implement the “deci-sectioning” described in the paper, since it is found to provide a more significant performance penalty in the majority of cases. Our version is also scale invariant, and is suitable for large ranges of input magnitude.

The legacy implementation, as it appears on arXiv, is also wrapped and exposed as mt2_arxiv for those that wish to independently cross-check the re-implementation. If you find any discrepancies, please file a bug report! We strongly encourage all users to use the primary mt2 method, due to the higher performance and scale invariance.

Performance

The default installation method via pip uses a precompiled wheel for your platform. If you wish to compile from source for your platform, you could instead install like so:

pip install mt2 --no-binary :all:

Since this can allow use of newer compilers, and code more optimised for your architecture, this can give a small speedup. On the author’s computer, there was 1% runtime reduction as measured with examples/benchmark.py.

License

Please cite:

All files other than src/lester_mt2_bisect_v7.h and src/mt2_Lallyver2.h are released under the MIT license.

Other implementations

A list of alternative implementations of the MT2 calculation can be found here:

https://www.hep.phy.cam.ac.uk/~lester/mt2/#Alternatives

In Python, the other wrapper of the same algorithm known to the authors is by Nikolai Hartmann, here: https://gitlab.cern.ch/nihartma/pymt2

Authors

  • @kesterlester: Original C++ implementation of mT2.

  • @rupt: Current C++ implementation used in this package.

  • @tpgillam: Python packaging

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mt2-1.2.2.tar.gz (36.0 kB view details)

Uploaded Source

Built Distributions

mt2-1.2.2-cp312-cp312-win_amd64.whl (53.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

mt2-1.2.2-cp312-cp312-win32.whl (52.6 kB view details)

Uploaded CPython 3.12 Windows x86

mt2-1.2.2-cp312-cp312-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

mt2-1.2.2-cp312-cp312-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

mt2-1.2.2-cp312-cp312-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (119.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

mt2-1.2.2-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (109.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

mt2-1.2.2-cp312-cp312-macosx_11_0_arm64.whl (50.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

mt2-1.2.2-cp312-cp312-macosx_10_9_universal2.whl (72.0 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

mt2-1.2.2-cp311-cp311-win_amd64.whl (53.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

mt2-1.2.2-cp311-cp311-win32.whl (52.5 kB view details)

Uploaded CPython 3.11 Windows x86

mt2-1.2.2-cp311-cp311-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

mt2-1.2.2-cp311-cp311-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

mt2-1.2.2-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (118.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

mt2-1.2.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (108.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

mt2-1.2.2-cp311-cp311-macosx_11_0_arm64.whl (50.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

mt2-1.2.2-cp311-cp311-macosx_10_9_universal2.whl (72.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

mt2-1.2.2-cp310-cp310-win_amd64.whl (53.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

mt2-1.2.2-cp310-cp310-win32.whl (52.5 kB view details)

Uploaded CPython 3.10 Windows x86

mt2-1.2.2-cp310-cp310-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

mt2-1.2.2-cp310-cp310-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

mt2-1.2.2-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (118.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

mt2-1.2.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (108.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

mt2-1.2.2-cp310-cp310-macosx_11_0_arm64.whl (50.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

mt2-1.2.2-cp310-cp310-macosx_10_9_universal2.whl (72.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

mt2-1.2.2-cp39-cp39-win_amd64.whl (53.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

mt2-1.2.2-cp39-cp39-win32.whl (52.6 kB view details)

Uploaded CPython 3.9 Windows x86

mt2-1.2.2-cp39-cp39-musllinux_1_2_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

mt2-1.2.2-cp39-cp39-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

mt2-1.2.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (118.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64

mt2-1.2.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (108.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

mt2-1.2.2-cp39-cp39-macosx_11_0_arm64.whl (50.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

mt2-1.2.2-cp39-cp39-macosx_10_9_universal2.whl (72.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file mt2-1.2.2.tar.gz.

File metadata

  • Download URL: mt2-1.2.2.tar.gz
  • Upload date:
  • Size: 36.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for mt2-1.2.2.tar.gz
Algorithm Hash digest
SHA256 615e5524e8a1933bb526fec9b23f610bd29f406e371ddec9f6a4b2b98fd6e716
MD5 3bef4d5bac3a8b43d0654e23e9022735
BLAKE2b-256 ba86067da57c5a6cafca6f316089f4391ad212e7006f31572d6a0878312d847c

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: mt2-1.2.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 53.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for mt2-1.2.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 dde814d526e6d16a7a98f7cbc25d258b3eefb6e0903c1b71ed6fe5876aa8d8c8
MD5 1959df9edcf1a67fca0a47ac0707b88c
BLAKE2b-256 0698b9aa6df58907dd43c13519e020f76ab28ed2dff86796a998a6d9b5b3e48f

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: mt2-1.2.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 52.6 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for mt2-1.2.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 128d0103b2f35155627aacef15ca1e25cc77c338c2e124b5dea2b82195cc5a14
MD5 8059ccd5f2f412405f25159ad6dbdb26
BLAKE2b-256 effc58206eb466e55d805b963226d631b54acead1f3b0009b9b5e00332f41852

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2044e92d954b16148dc6b096be1306e2d6d7c2c3b8c9cee287c1571c11d141e1
MD5 a39b45c46f0292698979f5eca69c08ec
BLAKE2b-256 59ebf2ab83505c0ddae77435da08763e1dbf23455106476b38a5c34079cfd427

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 9c5da442f8e4ba900001b1b169acb4c1c9f813ebef52ec75820f478a129a6499
MD5 d510aac14be233bf1cea7d979afa5fad
BLAKE2b-256 a3aa56f6dc92ad18b1efe084bed76437a8df0e0ab1c81196b1638dd02ef1b3f5

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp312-cp312-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp312-cp312-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dbd8cb83f41a99177481eca3ed68aff1807b37d48a3e29a7eca957926a7809b9
MD5 610bc990343c83edc6d477821ce8d18b
BLAKE2b-256 838a17f8b47a134bbcbe7421666f3862a4162b683209c75f40a12b6146a1bc8e

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b09e4522781893ecf4504f088d72ba77536e9d6b7e827358756745ac0661f3ec
MD5 ecaca05bc4f88aafccde2084e39ae766
BLAKE2b-256 99264a326644e0569484981f41a431ca79cfe577c686d3734ea5e330706b1486

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a00c382a7ef0b5bc935b08b385340d06078bfb558055dd422a0b651330ca6b35
MD5 b4fb8c32e92813d0abe3afdc4eee2ab7
BLAKE2b-256 90e23e75efd9e3a73bf952b09059a3c8c6877d465b94664f3ab6b787909299f9

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 32155568ef1c5f40d313aeb8a27042a4ece3293c05f1f574c1c022e4789431b8
MD5 4f75aad0d5999e9c47b043061368fdfe
BLAKE2b-256 ef395f29133f1dba973586615098c189e14278d0f02ab722c9af85d0cfe7ee71

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: mt2-1.2.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 53.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for mt2-1.2.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d62122d275beb27e271e9dfa172b3a36659c6457037640438ac8496872b25f84
MD5 dc0b94c9e73b5e533aa2554db14ba025
BLAKE2b-256 f2f116d528386cae52da218f70c54afefc8f97ca097d417d752ce78a5af91338

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: mt2-1.2.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 52.5 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for mt2-1.2.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 5255d6958d4d77bebbd1db09ff6cc40e388c05ac5412a3afabacc9c1d2346c28
MD5 6fd024bfe5f4da21c5fafed2a9e807aa
BLAKE2b-256 b63a634b259f9e8ef02e1dec11a4d33b7441ad30b15647bae2fbd89e6edf4492

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 613f7c76dd2c8e7afd5c168e0a8193b6e12e89a43f587c455e63289423025dad
MD5 b9483e2927483d804fe6e389319bf3b9
BLAKE2b-256 acd03857a1e9e438269d461c9c4da925a9a249763e966cc4f1ca0c831ee5da6d

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 ab2e288232387a8555700a3b95dc46216a237d581789a24d17bccf5683fa662c
MD5 c2ca0b4fad3f46ceaeb3e45d3e99a98e
BLAKE2b-256 aa4e1eb8ec7b8b502e64192b19d47fa600a3253259b3243e9450f694972da74c

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d55aa8569fcdc48bfc9dcb78440b136c15e07d8f68ba26fc2558735380f442c
MD5 586253b1c986d4898eeb81d76a532cad
BLAKE2b-256 1175436732cf74f651438e72607766df50dc402648ad0f3f9a14edb8c9abd231

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ea54b0213d0a3120a405f4d0777a67db1def615276026cf5d39b99ffac45c03c
MD5 a177f50361539195630c5944e7b90467
BLAKE2b-256 9ded18c4b6bee6a62dd702252dafe564d0cae3e8909a148a44f8189d63e2d146

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5f21b4214fc620f3e184542698402e0f48924e195579b8efba9097a5126bb882
MD5 0d643eb4c5690fd7187c9c87de071764
BLAKE2b-256 f1f655e320f8653edf0a4711e999f2e81227a98694e9c3ffb6b1ebe936dcb0c1

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 078fb29fcab2938e6a63959484a3e8a6503e6fd9d6c7d4af1a1d86dbfb9d9121
MD5 b2db80253967bf2b11278dbe7a1b7a96
BLAKE2b-256 7b3ec5a98a3aed07b2feed322fbcb1563fd21339cdccd0b20200275e50f49a84

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: mt2-1.2.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 53.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for mt2-1.2.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2a87aafea24960489f1cd9b711d55fea8184867462af2a1f271801fce98400e5
MD5 30d745888c0cc2ba240f0a708019039e
BLAKE2b-256 20c4d23555ce520cc14069c4434d87eda7711f9d29882e22cf46df2471a8277f

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: mt2-1.2.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 52.5 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for mt2-1.2.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 9a65372a41a5f3c0ddc0e1686245614789bf95772c23cae9d20650f79de494f8
MD5 310a14c1ea04fff3ea2bb7b1ce56e156
BLAKE2b-256 4c04cd0885e8c309c8b73c924fb45953ce8cdb019132a041bba8665b4a6bfbb9

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b32cd9a085d2bb7b5609b6b2436ce03ac768168bd1ca8d4199a544fc76ae2798
MD5 12530e2ac57c548eac24fc480f472d11
BLAKE2b-256 fc3b3f224382d6dae2e2336a9309e3e4947c11d1c4acc97dc8512a60fdf1aa29

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 20ba79a244d75646f8524f3b40cb1652bba2154b2c6ee512792e9d5c44a815e1
MD5 5d8be8489d2280064aa928398d217cc7
BLAKE2b-256 b6a402d3bd734d58db39268eb32796323b826e664947e8bd82fa69f81307c4d2

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 153e034e9fd7226784f1308ffa077bcb2686c7c7a9ae6708e728087b4c5ca63b
MD5 46a345314ff026414a0a2b215649c0f0
BLAKE2b-256 013e3afc7462f9f1ea1c0a930b7b0e51ea4dde30d83a9ea43c3841680069bfd7

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c9837b37f37e48d18cde86f321b797d7187ab165bcc7c16032b73b69264ef92f
MD5 f3423112738e317497bc4aedc280c03f
BLAKE2b-256 97556c2837f94194deffc6611d518b13e687932e5827f5b8ffe9f106162e00ee

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 24218557a57ef3e83e74a352a0d5faaaefb23e93f081fc9b8cda81b75d318f9b
MD5 ac5d6d6ce815fccc5e6c4d4db0b55f5b
BLAKE2b-256 589c470e3b494d645404c43eaf1f398947fa21fafb4a2232fd0e191dcff36e6e

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 310df434ea19d15c35f477b4d9e546b7fd63a6dee12eecb88db27428e9eb706b
MD5 1bf75e15c3a22a9fdff3a38675ac9531
BLAKE2b-256 5dfc3134b5139d84506c0aad008bcc7be284c286bd2ca227c3b2f41ab129c7b1

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: mt2-1.2.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 53.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for mt2-1.2.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e8ade2dd11ae4706870307275bbffef7ebc75e3e7aeebad16a5a342b190ede21
MD5 1ed4c40e08921d0f6408430b4e19057c
BLAKE2b-256 2c0b0b1fa09dd17578c7816619a39ec35cf1f221ebe9a6f7cc296d836497dbcc

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: mt2-1.2.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 52.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for mt2-1.2.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 bc955d45e6fc354d96792c63cb7351681c38f3514c3423965da3dac2593b17a1
MD5 e0631c99bb41c8b7e68533e356bea46c
BLAKE2b-256 010b2b8a9e116479c2a055b0466ebba9a90f54b129717032f0800278a7bec4f0

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 feac4d13b1b41dab33fde2dafc9fb846157aef29c11fff2e7cf1844acb92a7e9
MD5 543b738ecbde8fb03cac68501d7eb290
BLAKE2b-256 be342be406466970ea4e89cb3d75be043834fa770478dbb2a219b608688b1059

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

  • Download URL: mt2-1.2.2-cp39-cp39-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for mt2-1.2.2-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 3a618eeb4a6fa1d6e34049691109db47a7c6ff114ca4c8bb768ec87dc475abda
MD5 e6fef95d0866a6fcbe74f74ce1ff0e00
BLAKE2b-256 6a24119d626aa745f9370d99b21739bbd0aabb363f18188cb7dc7822cf779573

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf9c3a98ebc813463df2f8553b5c92f5e1e60a09ed20568a0b732866c9c12557
MD5 3ddba97da4d5bb0bff9b4311b2172693
BLAKE2b-256 2764e0822c4faaeb8a310b046237dde505d13d0130520f5679f00b8c9aa7ca5f

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b4459d9541f5371db95942bfb0279a5cd6f502be06d0e7e150bc2d2a2a85859e
MD5 9084dfaac2721e5b4b636aac8779ac82
BLAKE2b-256 44c6bbed5492345511dca6faa592122e6e5067726417e78325588e67f7fc48c0

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7410655927a74d4e0608f5356cbad9d0b4de971209d6537da423e2c70fb1fe1a
MD5 a9d80d42486a960eb167977a3c8d9442
BLAKE2b-256 bf68f17e191309fc9dcfc742f89dc8cdfa77213654b52ab8796ee74f4f9103f6

See more details on using hashes here.

File details

Details for the file mt2-1.2.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for mt2-1.2.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4e98fad2de6ff94be22350e1ba45c86a176b478bac5be93dcf18510ff655c70c
MD5 0c78660bc4b5250f16ea76d540d3ab6f
BLAKE2b-256 b0f6f283ccf54b102757a4d18882283c75ca8d894ef86b4b1b407e8a62862bd7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page