A simple module for outlier detection thanks to Modified Thompson Tau Test
Project description
Installation
mt3 requires Python 3.8+
To install the package run :
pip install mt3
If you are planing to use it with numpy and/or pandas, add optionnal dependencies :
pip install mt3[pandas, numpy] # or pip install mt3[numpy] for numpy only
mt3 will then be capable to deal with numpy.ndarray and pd.Series.
By default mt3 is provided with a table of Student T critical values. Available confidence levels are [0.9, 0.95, 0.975, 0.99, 0.995, 0.999]. To be able to use any confidence level, add scipy optionnal dependency :
pip install mt3[scipy]
Usage
mt3 main function is modified_thompson_tau_test :
from mt3 import modified_thompson_tau_test
sample = [-4, 3, -5, -2, 0, 1, 1000]
# You can use it with a simple list :
modified_thompson_tau_test(sample, 0.99)
# [False, False, False, False, False, False, True]
# But you can also use it with a numpy.ndarray or a pandas.Series
import numpy as np
import pandas as pd
modified_thompson_tau_test(np.array(sample), 0.99)
# [False False False False False False True] (numpy array)
modified_thompson_tau_test(pd.Series(sample), 0.99)
# [False False False False False False True] (numpy array)
# If you have nan values in your array or Series, you can choose to treat
# them as outliers
sample_with_nan = np.array([-4, np.nan, 3, -5, -2, 0, 1, 1000])
modified_thompson_tau_test(sample_with_nan, 0.99, nan_is_outlier=True)
# [False True False False False False False True] (numpy array)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file mt3-0.2.1.tar.gz.
File metadata
- Download URL: mt3-0.2.1.tar.gz
- Upload date:
- Size: 6.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.13 CPython/3.8.10 Windows/10
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
8ae38a496e415630b08c0688b03cabc9ea8a13ce31a77c880bc8a36d4b670e71
|
|
| MD5 |
48e0da37ad07eab329c66b00822d1fe8
|
|
| BLAKE2b-256 |
0dc4e22ce89cfcb227e26cd9f1a2984d867867c9f73118f386a536084873439f
|
File details
Details for the file mt3-0.2.1-py3-none-any.whl.
File metadata
- Download URL: mt3-0.2.1-py3-none-any.whl
- Upload date:
- Size: 7.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.13 CPython/3.8.10 Windows/10
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
71cedb414d29f175ecd48d9032feb9e568e686d16a5736b90e08e52fc3e1fbc1
|
|
| MD5 |
6eb79a9cff16faf56151407bc1deb32d
|
|
| BLAKE2b-256 |
579be80b1bc18b2b11cdef601c5d40082a643e08d96c2ff1a60395ca80b4137d
|