Skip to main content

Multi Time Series Encoders

Project description

Multi Time Series Encoders

The objective of this python package is to make easy the encoding and the classification/regression of multivariate time series (mts) data even when these are asynchronous. We say that data are of type mts when each observation is associated with multiple time series (e.g. the vital signs of a patient at a specific period).

Installation

The current version has been developed in Python 3.7. It also works in Python 3.8. If you encounter an issue, please try to run it again in a virtual machine containing Python 3.7 or 3.8.

pip install mtse

Sample code

import mtse

### Load sample data ###
train, val, test, norm = mtse.get_sample(return_norm=True)

### Using the class `mtse` ###
mtan = mtse.mtse(device='cuda', seed=1, experiment_id='mtan')
mtan.load_data(train, val, test, norm=norm)
mtan.build_model('mtan', 'regression', learn_emb=True, early_stop=10, cuda_empty_cache=True)
mtan.train(lossf='mape', n_iters=200, save_startegy='best')
mtan.predict(checkpoint='best')
mtan.encode_ts(data_to_embed='test', embed_pandas=True)

More details and examples in the documentation

What can be implemented / improved

Encoders

  • mTAN - Multi Time Attention Network - encoder
  • mTAN - Multi Time Attention Network - encoder-decoder
  • SeFT - Set Function for Time series
  • STraTS - Self-supervised Transformer for Time-Series
  • ODE-based encoders

Note that we only implemented the mTAN encoder as a baseline for now. At this stage, this model works only for supervised learning, meaning that it uses the target variable to compute the loss and update the encoder weights. Thus, the priority would be to implement an unsupervised encoder next (encoder-decoder models or self-supervised encoders).

Other features

  • Cross-validation evaluation, prediction and encoding
  • Support for other data inputs in the dataset classes (currently the mtan_Dataset class)
  • Support for time-series forecasting and inference tasks

References

Satya Narayan Shukla and Benjamin Marlin, "Multi-Time Attention Networks for Irregularly Sampled Time Series", International Conference on Learning Representations, 2021.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mtse-0.1.4.tar.gz (15.4 kB view details)

Uploaded Source

Built Distribution

mtse-0.1.4-py3-none-any.whl (1.6 MB view details)

Uploaded Python 3

File details

Details for the file mtse-0.1.4.tar.gz.

File metadata

  • Download URL: mtse-0.1.4.tar.gz
  • Upload date:
  • Size: 15.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.11

File hashes

Hashes for mtse-0.1.4.tar.gz
Algorithm Hash digest
SHA256 5f43cf02e415cc4f6fa6be8ec01bc212f6109acc3bef74158977b5d5b73affdf
MD5 c49b741b85b36e557701bb05b8c8c0a1
BLAKE2b-256 a85218e58b04d18c6a58ada9ad61ca5364215b9f66b79d2d4c3c353af32b1c64

See more details on using hashes here.

File details

Details for the file mtse-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: mtse-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.11

File hashes

Hashes for mtse-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 6dd88e8908b80b8fdd2e4975a26d430c24965bfda20dc239a15414e94fb2deb5
MD5 14404544721c30a3cb1de2752adfffa2
BLAKE2b-256 0d426331295c4af2e4c238e931978079c183de466519021874218b991f97b9c5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page