Skip to main content

Multi Time Series Encoders

Project description

Multi Time Series Encoders

The objective of this python package is to make easy the encoding and the classification/regression of multivariate time series (mts) data even when these are asynchronous. We say that data are of type mts when each observation is associated with multiple time series (e.g. the vital signs of a patient at a specific period).

Installation

The current version has been developed in Python 3.7. It also works in Python 3.8. If you encounter an issue, please try to run it again in a virtual machine containing Python 3.7 or 3.8.

pip install mtse

Sample code

import mtse

### Load sample data ###
train, val, test, norm = mtse.get_sample(return_norm=True)

### Using the class `mtse` ###
mtan = mtse.mtse(device='cuda', seed=1, experiment_id='mtan')
mtan.load_data(train, val, test, norm=norm)
mtan.build_model('mtan', 'regression', learn_emb=True, early_stop=10, cuda_empty_cache=True)
mtan.train(lossf='mape', n_iters=200, save_startegy='best')
mtan.predict(checkpoint='best')
mtan.encode_ts(data_to_embed='test', embed_pandas=True)

More details and examples in the documentation

What can be implemented / improved

Encoders

  • mTAN - Multi Time Attention Network - encoder
  • mTAN - Multi Time Attention Network - encoder-decoder
  • SeFT - Set Function for Time series
  • STraTS - Self-supervised Transformer for Time-Series
  • ODE-based encoders

Note that we only implemented the mTAN encoder as a baseline for now. At this stage, this model works only for supervised learning, meaning that it uses the target variable to compute the loss and update the encoder weights. Thus, the priority would be to implement an unsupervised encoder next (encoder-decoder models or self-supervised encoders).

Other features

  • Cross-validation evaluation, prediction and encoding
  • Support for other data inputs in the dataset classes (currently the mtan_Dataset class)
  • Support for time-series forecasting and inference tasks

References

Satya Narayan Shukla and Benjamin Marlin, "Multi-Time Attention Networks for Irregularly Sampled Time Series", International Conference on Learning Representations, 2021.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mtse-0.1.5.1.tar.gz (15.4 kB view details)

Uploaded Source

Built Distribution

mtse-0.1.5.1-py3-none-any.whl (1.6 MB view details)

Uploaded Python 3

File details

Details for the file mtse-0.1.5.1.tar.gz.

File metadata

  • Download URL: mtse-0.1.5.1.tar.gz
  • Upload date:
  • Size: 15.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for mtse-0.1.5.1.tar.gz
Algorithm Hash digest
SHA256 292171e66f94ca5a7983d77c55bc59792af113164e3592f3b1edc9ba1076e7b1
MD5 62b1b442cce004360d9e63d35dd959e4
BLAKE2b-256 65fe4483822d65ac603f5655201c4978981c488449debe9fc60f897bf40f4084

See more details on using hashes here.

File details

Details for the file mtse-0.1.5.1-py3-none-any.whl.

File metadata

  • Download URL: mtse-0.1.5.1-py3-none-any.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for mtse-0.1.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 bddb1f6be07510ac33ff6ca5c9d1545881817d6c4a5dcf147073a795a162863a
MD5 ad98837abe9d0e0d94b76c523864cd2c
BLAKE2b-256 48a7e19b9c5856efa2cf6b492ab637a7f193336ad6a51c65a6d39bb7e3736b1a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page