Skip to main content

A construct for implementing multi-AZ observability to detect single AZ impairments

Project description

multi-az-observability

This is a CDK construct for multi-AZ observability to help detect single-AZ impairments. This is currently an alpha version, but is being used in the AWS Advanced Multi-AZ Resilience Patterns workshop.

There is a lot of available information to think through and combine to provide signals about single-AZ impact. To simplify the setup and use reasonable defaults, this construct (available in TypeScript, Go, Python, and .NET [Java coming soon]) sets up the necessary observability. To use the CDK construct, you first define your service like this:

var wildRydesService = new Service(new ServiceProps(){
    ServiceName = "WildRydes",
    BaseUrl = "http://www.example.com",
    FaultCountThreshold = 25,
    AvailabilityZoneNames = vpc.AvailabilityZones,
    Period = Duration.Seconds(60),
    LoadBalancer = loadBalancer,
    DefaultAvailabilityMetricDetails = new ServiceMetricDetails(new ServiceMetricDetailsProps() {
        AlarmStatistic = "Sum",
        DatapointsToAlarm = 3,
        EvaluationPeriods = 5,
        FaultAlarmThreshold = 1,
        FaultMetricNames = new string[] { "Fault", "Error" },
        GraphedFaultStatistics = new string[] { "Sum" },
        GraphedSuccessStatistics = new string[] { "Sum" },
        MetricNamespace = metricsNamespace,
        Period = Duration.Seconds(60),
        SuccessAlarmThreshold = 99,
        SuccessMetricNames = new string[] {"Success"},
        Unit = Unit.COUNT,
    }),
    DefaultLatencyMetricDetails = new ServiceMetricDetails(new ServiceMetricDetailsProps(){
        AlarmStatistic = "p99",
        DatapointsToAlarm = 3,
        EvaluationPeriods = 5,
        FaultAlarmThreshold = 1,
        FaultMetricNames = new string[] { "FaultLatency" },
        GraphedFaultStatistics = new string[] { "p50" },
        GraphedSuccessStatistics = new string[] { "p50", "p99", "tm50", "tm99" },
        MetricNamespace = metricsNamespace,
        Period = Duration.Seconds(60),
        SuccessAlarmThreshold = 100,
        SuccessMetricNames = new string[] {"SuccessLatency"},
        Unit = Unit.MILLISECONDS,
    }),
    DefaultContributorInsightRuleDetails =  new ContributorInsightRuleDetails(new ContributorInsightRuleDetailsProps() {
        AvailabilityZoneIdJsonPath = azIdJsonPath,
        FaultMetricJsonPath = faultMetricJsonPath,
        InstanceIdJsonPath = instanceIdJsonPath,
        LogGroups = serverLogGroups,
        OperationNameJsonPath = operationNameJsonPath,
        SuccessLatencyMetricJsonPath = successLatencyMetricJsonPath
    }),
    CanaryTestProps = new AddCanaryTestProps() {
        RequestCount = 10,
        LoadBalancer = loadBalancer,
        Schedule = "rate(1 minute)",
        NetworkConfiguration = new NetworkConfigurationProps() {
            Vpc = vpc,
            SubnetSelection = new SubnetSelection() { SubnetType = SubnetType.PRIVATE_ISOLATED }
        }
    }
});
wildRydesService.AddOperation(new Operation(new OperationProps() {
    OperationName = "Signin",
    Path = "/signin",
    Service = wildRydesService,
    Critical = true,
    HttpMethods = new string[] { "GET" },
    ServerSideAvailabilityMetricDetails = new OperationMetricDetails(new OperationMetricDetailsProps() {
        OperationName = "Signin",
        MetricDimensions = new MetricDimensions(new Dictionary<string, string> {{ "Operation", "Signin"}}, "AZ-ID", "Region")
    }, wildRydesService.DefaultAvailabilityMetricDetails),
    ServerSideLatencyMetricDetails = new OperationMetricDetails(new OperationMetricDetailsProps() {
        OperationName = "Signin",
        SuccessAlarmThreshold = 150,
        MetricDimensions = new MetricDimensions(new Dictionary<string, string> {{ "Operation", "Signin"}}, "AZ-ID", "Region")
    }, wildRydesService.DefaultLatencyMetricDetails),
    CanaryTestLatencyMetricsOverride = new CanaryTestMetricsOverride(new CanaryTestMetricsOverrideProps() {
        SuccessAlarmThreshold = 250
    })
}));
wildRydesService.AddOperation(new Operation(new OperationProps() {
    OperationName = "Pay",
    Path = "/pay",
    Service = wildRydesService,
    HttpMethods = new string[] { "GET" },
    Critical = true,
    ServerSideAvailabilityMetricDetails = new OperationMetricDetails(new OperationMetricDetailsProps() {
        OperationName = "Pay",
        MetricDimensions = new MetricDimensions(new Dictionary<string, string> {{ "Operation", "Pay"}}, "AZ-ID", "Region")
    }, wildRydesService.DefaultAvailabilityMetricDetails),
    ServerSideLatencyMetricDetails = new OperationMetricDetails(new OperationMetricDetailsProps() {
        OperationName = "Pay",
        SuccessAlarmThreshold = 200,
        MetricDimensions = new MetricDimensions(new Dictionary<string, string> {{ "Operation", "Pay"}}, "AZ-ID", "Region")
    }, wildRydesService.DefaultLatencyMetricDetails),
    CanaryTestLatencyMetricsOverride = new CanaryTestMetricsOverride(new CanaryTestMetricsOverrideProps() {
        SuccessAlarmThreshold = 300
    })
}));
wildRydesService.AddOperation(new Operation(new OperationProps() {
    OperationName = "Ride",
    Path = "/ride",
    Service = wildRydesService,
    HttpMethods = new string[] { "GET" },
    Critical = true,
    ServerSideAvailabilityMetricDetails = new OperationMetricDetails(new OperationMetricDetailsProps() {
        OperationName = "Ride",
        MetricDimensions = new MetricDimensions(new Dictionary<string, string> {{ "Operation", "Ride"}}, "AZ-ID", "Region")
    }, wildRydesService.DefaultAvailabilityMetricDetails),
    ServerSideLatencyMetricDetails = new OperationMetricDetails(new OperationMetricDetailsProps() {
        OperationName = "Ride",
        SuccessAlarmThreshold = 350,
        MetricDimensions = new MetricDimensions(new Dictionary<string, string> {{ "Operation", "Ride"}}, "AZ-ID", "Region")
    }, wildRydesService.DefaultLatencyMetricDetails),
    CanaryTestLatencyMetricsOverride = new CanaryTestMetricsOverride(new CanaryTestMetricsOverrideProps() {
        SuccessAlarmThreshold = 550
    })
}));
wildRydesService.AddOperation(new Operation(new OperationProps() {
    OperationName = "Home",
    Path = "/home",
    Service = wildRydesService,
    HttpMethods = new string[] { "GET" },
    Critical = true,
    ServerSideAvailabilityMetricDetails = new OperationMetricDetails(new OperationMetricDetailsProps() {
        OperationName = "Home",
        MetricDimensions = new MetricDimensions(new Dictionary<string, string> {{ "Operation", "Ride"}}, "AZ-ID", "Region")
    }, wildRydesService.DefaultAvailabilityMetricDetails),
    ServerSideLatencyMetricDetails = new OperationMetricDetails(new OperationMetricDetailsProps() {
        OperationName = "Home",
        SuccessAlarmThreshold = 100,
        MetricDimensions = new MetricDimensions(new Dictionary<string, string> {{ "Operation", "Ride"}}, "AZ-ID", "Region")
    }, wildRydesService.DefaultLatencyMetricDetails),
    CanaryTestLatencyMetricsOverride = new CanaryTestMetricsOverride(new CanaryTestMetricsOverrideProps() {
        SuccessAlarmThreshold = 200
    })
}));

Then you provide that service definition to the CDK construct.

InstrumentedServiceMultiAZObservability multiAvailabilityZoneObservability = new InstrumentedServiceMultiAZObservability(this, "MultiAZObservability", new InstrumentedServiceMultiAZObservabilityProps() {
    Service = wildRydesService,
    CreateDashboards = true,
    Interval = Duration.Minutes(60), // The interval for the dashboard
    OutlierDetectionAlgorithm = OutlierDetectionAlgorithm.STATIC
});

You define some characteristics of the service, default values for metrics and alarms, and then add operations as well as any overrides for default values that you need. The construct can also automatically create synthetic canaries that test each operation with a very simple HTTP check, or you can configure your own synthetics and just tell the construct about the metric details and optionally log files. This creates metrics, alarms, and dashboards that can be used to detect single-AZ impact.

If you don't have service specific logs and custom metrics with per-AZ dimensions, you can still use the construct to evaluate ALB and NAT Gateway metrics to find single AZ faults.

BasicServiceMultiAZObservability multiAvailabilityZoneObservability = new BasicServiceMultiAZObservability(this, "MultiAZObservability", new BasicServiceMultiAZObservabilityProps() {
    ApplicationLoadBalancers = new IApplicationLoadBalancer[] { loadBalancer },
    NatGateways = new Dictionary<string, CfnNatGateway>() {
        { "us-east-1a", natGateway1},
        { "us-east-1b", natGateway2},
        { "us-east-1c", natGateway3},
    },
    CreateDashboard = true,
    OutlierDetectionAlgorithm = OutlierDetectionAlgorithm.STATIC,
    FaultCountPercentageThreshold = 1.0, // The fault rate to alarm on for errors seen from the ALBs in the same AZ
    PacketLossImpactPercentageThreshold = 0.01, // The percentage of packet loss to alarm on for the NAT Gateways in the same AZ
    ServiceName = "WildRydes",
    Period = Duration.Seconds(60), // The period for metric evaluation
    Interval = Duration.Minutes(60) // The interval for the dashboards
    EvaluationPeriods = 5,
    DatapointsToAlarm = 3
});

If you provide a load balancer, the construct assumes it is deployed in each AZ of the VPC the load balancer is associated with and will look for HTTP metrics using those AZs as dimensions.

Both options support running workloads on EC2, ECS, Lambda, and EKS.

TODO

  • Add additional unit tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multi_az_observability-0.0.1a17.tar.gz (79.9 MB view details)

Uploaded Source

Built Distribution

multi_az_observability-0.0.1a17-py3-none-any.whl (79.9 MB view details)

Uploaded Python 3

File details

Details for the file multi_az_observability-0.0.1a17.tar.gz.

File metadata

File hashes

Hashes for multi_az_observability-0.0.1a17.tar.gz
Algorithm Hash digest
SHA256 9510a0d08a8dcc6b74e528ea563fb401dcb29cd9fb3f16ae08563b45caa99f4b
MD5 fad5210c8a352a80642ea945198a88b3
BLAKE2b-256 3205f6c85026fa97af0f2e6bbee25e582d5a735215765655ef7bf7aed36e7309

See more details on using hashes here.

File details

Details for the file multi_az_observability-0.0.1a17-py3-none-any.whl.

File metadata

File hashes

Hashes for multi_az_observability-0.0.1a17-py3-none-any.whl
Algorithm Hash digest
SHA256 971ac8c203794b4ef03c6c5ec9c27d727cbc06933f27e74d42e22eb1d0a9145f
MD5 b8cbea0c838ea126d684aee93e62b645
BLAKE2b-256 72951c394be192bc4ccff2d85eec1f158e40d3c1a7358672749e205501faf574

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page