Skip to main content

Multivariate forecasting using Facebook Prophet

Project description

Multi Prophet

Build Status PyPI version License: MIT

Multi Prophet is a procedure for forecasting time series data for multipe dependent variables based on Facebook Prophet package. If you have no prior experience with Facebook Prophet, check out their docs.

Multi Prophet does not train a single model with many outputs, it just wraps Facebook Prophet interface to support configuration and controll over multiple models. Multi Prophet has a very similar interface as Facebook Prophet.

The main difference is that return values of each method is a dictionary where each dependent value is a key, and the value is the return value of the linked Facebook Prophet model.

If Prophet return value is a data frame, then MultiProphet return value will be:

{"dependent_variable1": df1, "dependent_variable2": df2}

Installation

Multi Prophet is on PyPi. pip install multi-prophet

Getting started

Creating a basic model is almost the same as creating a Prophet model:

Prophet

# dataframe needs to have columns ds and y
from fbprophet import Prophet

m = Prophet()
m.fit(df)

future = m.create_future_dataframe(df)
forecast = m.predict(future)
m.plot(forecast)

Multi Prophet

# dataframe needs to have column ds, and it has y1 and y2 as dependent variables
from multi_prophet import MultiProphet

m = MultiProphet(columns=["y1", "y2"])
m.fit(df)

future = m.create_future_dataframe(df)
forecast = m.predict(future)
m.plot(forecast)

Adding country holidays

Prophet

m.add_country_holidays(country_name="US")

Multi Prophet

# For all dependent variables
m.add_country_holidays("US")

# For selected dependent variables
m.add_country_holidays("US", columns=["y1"])

Adding seasonality

Prophet

m.add_seasonality(name="monthly", period=30.5, fourier_order=5)

Multi Prophet

# For all dependent variables
m.add_seasonality(name="monthly", period=30.5, fourier_order=5)

# For selected dependent variables
m.add_seasonality(name="monthly", period=30.5, fourier_order=5, columns=["y1"])

Adding regressors

Prophet

m.add_regressor("Matchday")

Multi Prophet

# For all dependent variables
m.add_regressor("Matchday")

# For selected dependent variables
m.add_regressor("Matchday", columns=["y"])

Ploting results

Prophet

# Prophet
m.plot(forecast)
m.plot_components(forecast)

# With Plotly
from fbprophet.plot import plot_plotly, plot_components_plotly
import plotly.offline as py
py.init_notebook_mode()

fig = plot_plotly(m, forecast)
py.iplot(fig)

fig = plot_components_plotly(m, forecast)
py.iplot(fig)

Multi Prophet

m.plot(forecast)
m.plot_components(forecast)

# With Plotly
figures = m.plot(forecast, plotly=True)
for fig in figures.values():
    fig.show()

# or access by key
figures["y1"].show()

figures = m.plot_components(forecast, plotly=True)
for fig in figures.values():
    fig.show()

# or access by key
figures["y1"].show()

Facebook Prophet model configuration

Facebook Prophet supports a lot of configuration through kwargs. There are two ways to do it with Multi Prophet:

  1. Through kwargs just as with Facebook Prophet
    • Prophet
m = Prophet(growth="logistic")
m.fit(self.df, algorithm="Newton")
m.make_future_dataframe(7, freq="H")
m.add_regressor("Matchday", prior_scale=10)
* Multi Prophet
m = MultiProphet(columns=["y1", "y2"], growth="logistic")
m.fit(self.df, algorithm="Newton")
m.make_future_dataframe(7, freq="H")
m.add_regressor("Matchday", prior_scale=10)
  1. Configuration through constructor
# Same configuration for each dependent variable
m = MultiProphet(columns=["y1", "y2"],
                 growth="logistic",
                 weekly_seasonality=True,
                 n_changepoints=50)

# Different configuration for each model
config = {
    "y1": {"growth": "linear", "daily_seasonality": True},
    "y2": {"growth": "logistic", "weekly_seasonality": True}
}
m = MultiProphet(columns=["y1", "y2"], config=config)

# Adding regressors (dataframe has columns c1 and c2)
regressors = {
    "y1": [
        {"name": "c1", "prior_scale": 0.5},
        { "name": "c2", "prior_scale": 0.3}
    ],
    "y2": [{"name": "c2", "prior_scale": 0.3}]
}
m = MultiProphet(columns=["y1", "y2"], regressors=regressors)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multi-prophet-1.1.1.tar.gz (5.4 kB view details)

Uploaded Source

Built Distribution

multi_prophet-1.1.1-py3-none-any.whl (5.5 kB view details)

Uploaded Python 3

File details

Details for the file multi-prophet-1.1.1.tar.gz.

File metadata

  • Download URL: multi-prophet-1.1.1.tar.gz
  • Upload date:
  • Size: 5.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.2

File hashes

Hashes for multi-prophet-1.1.1.tar.gz
Algorithm Hash digest
SHA256 4ed88ae69f14d81c21969ed4527db7df9899d6d55afda63e3c29fe93e54eaf45
MD5 abd07438aa7d0b40fe29f56039365c8c
BLAKE2b-256 2bf9a19e7ad91f9ad491eba2296472e0fd15018d006e0196d2402b75d205ae56

See more details on using hashes here.

File details

Details for the file multi_prophet-1.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for multi_prophet-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 dcfed33058be531d316db87c0130a0c58ea45ab937fc1c4083e0f7bb8ca34265
MD5 b515cd01e0eaa17d8052cc59b5f1e12b
BLAKE2b-256 d3c3733b6d2ef622eea553cc2c813a4e0bb52d7cc45cf7f42c7e1f1698aa88b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page