Skip to main content

No project description provided

Project description

说明

本包用于使用多线程调接口保存结果

如果你有很大量的数据需要调用你的某个接口,然后把结果保存到文件, 这个包可以提供一个封装好的类,简化多线程的编写, 并能按任意设定值把结果拆分保存到文件。只需编写针对单次调用的输入输出转换函数。

  • 输入:pandas DataFrame 格式的原始数据,每一行可用于构造一次请求的参数
  • 输出:文件支持fth, csv, xlsx三种格式, 默认保存在当前目录下的data目录

示例

1. 准备数据和函数

# a. 输入数据 df (DataFrame格式)
## df的每一行是一次请求需要的原始数据

# b. 处理单次输入的函数
import json
def makeReqData(json_str):
    # json_str: row.to_json() df的一行数据
    # TODO: 使用json_str生成请求参数
    json_str = json.loads(json_str)
    return json_str

# c. 处理单次输出的函数
def makeResult(r):
    # r: res.json(), 接口返回的json
    # TODO: 选取需要保存的字段, 保存为新的dict, 用于写到文件
    data = r.get("data")
    return data

2. 多线程调用接口保存文件

# 方法一
from multi_request import mreq

m = mreq.MultiRequest()
m.url = "http://127.0.0.1:8080/xxx"  # 请求接口, 目前只支持 POST 方法
m.makeReqData = makeReqData  # 你的生成单次请求数据的函数
m.makeResult = makeResult  # (可选) 处理单次返回数据的函数, 生成最终结果字典
m.input_data = df  # 原始请求数据, pandas的 DataFrame 格式
m.parallel_batch_size = 20  # (可选) 并发数,默认: 100
m.save_batch_size = 12  # (可选) 每几个保存一个文件,默认: 5000
m.res_format = "fth"  # (可选) 默认: fth, 支持格式: fth, csv, xlsx
m.res_dir = "data"  # (可选) 保存结果的目录, 默认: ./data
m.run()
# 方法二
from multi_request import mreq

params = {
    "url": "http://127.0.0.1:8080/xxx",
    "makeReqData": makeReqData,
    "makeResult": makeResult,
    "input_data": df,
    "parallel_batch_size": 20,
    "save_batch_size": 8,
    "res_format": "csv",
    "res_dir": "tmp_csv",
}
m = mreq.MultiRequest(**params)
m.run()
# 使用默认参数
from multi_request import mreq

params = {
    "url": "http://127.0.0.1:8080/xxx",
    "makeReqData": makeReqData,
    "input_data": df,
}
m = mreq.MultiRequest(**params)
m.run()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multi_request-0.0.9.tar.gz (3.5 kB view details)

Uploaded Source

Built Distribution

multi_request-0.0.9-py3-none-any.whl (3.6 kB view details)

Uploaded Python 3

File details

Details for the file multi_request-0.0.9.tar.gz.

File metadata

  • Download URL: multi_request-0.0.9.tar.gz
  • Upload date:
  • Size: 3.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.12

File hashes

Hashes for multi_request-0.0.9.tar.gz
Algorithm Hash digest
SHA256 b8047029185569025aa678b246fd28c0c6c4397f0240e09f70bf4bdf94caf32d
MD5 a5768b8b49d8d8a72a938faecfe0a90f
BLAKE2b-256 6a3c86179e00d1bdf9afdd4a63f23c4f22cdabf5b3af61e1e71e53887ab49f5e

See more details on using hashes here.

File details

Details for the file multi_request-0.0.9-py3-none-any.whl.

File metadata

File hashes

Hashes for multi_request-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 9771a784e3396809aeaa7c4288cd20ce2c64ce0e60a5ab0cd51e595bc9c42315
MD5 483b80796acc93ab7e99c37b80adf5d3
BLAKE2b-256 c966720a65dbbbbdb716300bb77762366242647863e3c31e70479bdb61a75e12

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page