Skip to main content

No project description provided

Project description

说明

本包用于使用多线程调接口保存结果

输入一个df格式的原始数据,用每一行生成请求参数,来调用某个接口,分批次保存结果到文件。 结果文件支持fth, csv, xlsx三种格式。

示例

1. 准备数据和函数

# a. 输入数据 df (DataFrame格式)
## df的每一行是一次请求需要的原始数据

# b. 处理单次输入的函数
import json
def makeReqData(json_str):
    # json_str: row.to_json() df的一行数据
    # TODO: 使用json_str生成请求参数
    json_str = json.loads(json_str)
    return json_str

# c. 处理单次输出的函数
def makeResult(r):
    # r: res.json(), 接口返回的json
    # TODO: 选取需要保存的字段, 保存为新的dict, 用于写到文件
    data = r.get("data")
    return data

2. 多线程调用接口保存文件

# 方法一
from multi_request import mreq

m = mreq.MultiRequest()
m.url = "http://127.0.0.1:8080/hello"  # 请求接口, 目前只支持 POST 方法
m.makeReqData = makeReqData  # 你的生成单次请求数据的函数
m.makeResult = makeResult  # (可选) 处理单次返回数据的函数, 生成最终结果字典
m.input_data = df  # 原始请求数据, pandas的 DataFrame 格式
m.parallel_batch_size = 20  # (可选) 并发数,默认: 100
m.save_batch_size = 12  # (可选) 每几个保存一个文件,默认: 5000
m.res_format = "fth"  # (可选) 默认: fth, 支持格式: fth, csv, xlsx
m.res_dir = "data"  # (可选) 保存结果的目录, 默认: ./data
m.run()
# 方法二
from multi_request import mreq

params = {
    "url": "http://127.0.0.1:8080/hello",
    "makeReqData": makeReqData,
    "makeResult": makeResult,
    "input_data": df,
    "parallel_batch_size": 20,
    "save_batch_size": 8,
    "res_format": "csv",
    "res_dir": "tmp_csv",
}
m = mreq.MultiRequest(**params)
m.run()
# 使用默认参数
from multi_request import mreq

params = {
    "url": "http://127.0.0.1:8080/hello",
    "makeReqData": makeReqData,
    "input_data": df,
}
m = mreq.MultiRequest(**params)
m.run()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multi_request-0.0.7.tar.gz (3.3 kB view details)

Uploaded Source

Built Distribution

multi_request-0.0.7-py3-none-any.whl (3.4 kB view details)

Uploaded Python 3

File details

Details for the file multi_request-0.0.7.tar.gz.

File metadata

  • Download URL: multi_request-0.0.7.tar.gz
  • Upload date:
  • Size: 3.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.12

File hashes

Hashes for multi_request-0.0.7.tar.gz
Algorithm Hash digest
SHA256 7838eed6cf53dd184512b3d4234c698e5faf78b1f5f912cb7e37ed943c4bf613
MD5 7c146490273a0bdb14e275ddcea746bd
BLAKE2b-256 e07d5d6c8ec4de2e4af30d451e4502ad8007d0d0bd300abd9b473e76f71cb556

See more details on using hashes here.

File details

Details for the file multi_request-0.0.7-py3-none-any.whl.

File metadata

File hashes

Hashes for multi_request-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 fb3780e3542d455569faff2e1c9dc2456d1d51d5a85021a5688d6a76cc124b4f
MD5 d240a758703511092a1aa7fc5f783f78
BLAKE2b-256 3d210932a4d9e38dfaec775fbaf056e1082a95e1ea7d6628919f39991fb84fcd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page