Skip to main content

Container class for representing and managing multi-omics genomic experiments

Project description

Project generated with PyScaffold PyPI-Server Unit tests

MultiAssayExperiment

Container class to represent and manage multi-omics genomic experiments. MultiAssayExperiment (MAE) simplifies the management of multiple experimental assays conducted on a shared set of specimens, follows Bioconductor's MAE R/Package.

Install

To get started, install the package from PyPI

pip install multiassayexperiment

Usage

An MAE contains three main entities,

  • Primary information (column_data): Bio-specimen/sample information. The column_data may provide information about patients, cell lines, or other biological units. Each row in this table represents an independent biological unit. It must contain an index that maps to the 'primary' in sample_map.

  • Experiments (experiments): Genomic data from each experiment. either a SingleCellExperiment, SummarizedExperiment, RangedSummarizedExperiment or any class that extends a SummarizedExperiment.

  • Sample Map (sample_map): Map biological units from column_data to the list of experiments. Must contain columns,

    • assay provides the names of the different experiments performed on the biological units. All experiment names from experiments must be present in this column.
    • primary contains the sample name. All names in this column must match with row labels from col_data.
    • colname is the mapping of samples/cells within each experiment back to its biosample information in col_data.

    Each sample in column_data may map to one or more columns per assay.

Let's start by first creating few experiments:

from random import random

import numpy as np
from biocframe import BiocFrame
from genomicranges import GenomicRanges
from iranges import IRanges

nrows = 200
ncols = 6
counts = np.random.rand(nrows, ncols)
gr = GenomicRanges(
    seqnames=[
            "chr1",
            "chr2",
            "chr2",
            "chr2",
            "chr1",
            "chr1",
            "chr3",
            "chr3",
            "chr3",
            "chr3",
        ] * 20,
    ranges=IRanges(range(100, 300), range(110, 310)),
    strand = ["-", "+", "+", "*", "*", "+", "+", "+", "-", "-"] * 20,
    mcols=BiocFrame({
        "score": range(0, 200),
        "GC": [random() for _ in range(10)] * 20,
    })
)

col_data_sce = BiocFrame({"treatment": ["ChIP", "Input"] * 3},
    row_names=[f"sce_{i}" for i in range(6)],
)

col_data_se = BiocFrame({"treatment": ["ChIP", "Input"] * 3},
    row_names=[f"se_{i}" for i in range(6)],
)

sample_map = BiocFrame({
    "assay": ["sce", "se"] * 6,
    "primary": ["sample1", "sample2"] * 6,
    "colname": ["sce_0", "se_0", "sce_1", "se_1", "sce_2", "se_2", "sce_3", "se_3", "sce_4", "se_4", "sce_5", "se_5"]
})

sample_data = BiocFrame({"samples": ["sample1", "sample2"]}, row_names= ["sample1", "sample2"])

Finally, we can create an MultiAssayExperiment object:

from multiassayexperiment import MultiAssayExperiment
from singlecellexperiment import SingleCellExperiment
from summarizedexperiment import SummarizedExperiment

tsce = SingleCellExperiment(
    assays={"counts": counts}, row_data=gr.to_pandas(), column_data=col_data_sce
)

tse2 = SummarizedExperiment(
    assays={"counts": counts.copy()},
    row_data=gr.to_pandas().copy(),
    column_data=col_data_se.copy(),
)

mae = MultiAssayExperiment(
    experiments={"sce": tsce, "se": tse2},
    column_data=sample_data,
    sample_map=sample_map,
    metadata={"could be": "anything"},
)
## output
class: MultiAssayExperiment containing 2 experiments
[0] sce: SingleCellExperiment with 200 rows and 6 columns
[1] se: SummarizedExperiment with 200 rows and 6 columns
column_data columns(1): ['samples']
sample_map columns(3): ['assay', 'primary', 'colname']
metadata(1): could be

For more use cases, checkout the documentation.

Note

This project has been set up using PyScaffold 4.5. For details and usage information on PyScaffold see https://pyscaffold.org/.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multiassayexperiment-0.4.4.tar.gz (1.1 MB view details)

Uploaded Source

Built Distribution

MultiAssayExperiment-0.4.4-py3-none-any.whl (15.1 kB view details)

Uploaded Python 3

File details

Details for the file multiassayexperiment-0.4.4.tar.gz.

File metadata

  • Download URL: multiassayexperiment-0.4.4.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for multiassayexperiment-0.4.4.tar.gz
Algorithm Hash digest
SHA256 2e91344448a6f730b2356a9e0a84e61ca58545d3a1a95b5a45b1554853838197
MD5 083142ef1900d279884d688e51fc9045
BLAKE2b-256 938738fa9ed11868a0c164a9269bcbb62d4fbefd65b8d8d0537360c72179bd2b

See more details on using hashes here.

File details

Details for the file MultiAssayExperiment-0.4.4-py3-none-any.whl.

File metadata

File hashes

Hashes for MultiAssayExperiment-0.4.4-py3-none-any.whl
Algorithm Hash digest
SHA256 a2e95b64d87ed0b188c01ef9d55b39a8a075f5cc17e4d3d7db1729ff001f2625
MD5 5f685d3743d8103c96b9ca873fbbc2d7
BLAKE2b-256 b64398b9106b8ebce3f4e94ca42aacfa4512dc310f86cd0cb21a96a75a83e964

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page