Skip to main content

Multivariate probability distributions using copula theory.

Project description

binder

MultiCopula

What is MultiCopula?

It is a multivariate probabilistic modelling package, which uses copula theory.

How to install

The package can be installed via pip using:

pip install multicopula

Example:

Run the load base case as:

from multicopula import EllipticalCopula
import numpy as np

#%%
n_samples_ = 5000
covariance_ = np.array([[   1, -0.6,  0.7],
                        [-0.6,    1, -0.4],
                        [ 0.7,  -0.4,   1]])
mean_ = np.array([1, 3, 4])
data = np.random.multivariate_normal(mean_, covariance_, 5000).T

#%%
copula_model = EllipticalCopula(data)
copula_model.fit()

#%%
samples_ = copula_model.sample(10000)
covariance_samples = np.corrcoef(samples_)

More examples can be found in the examples folder (under development).

Reading and citations:

The mathematical formulation of the power flow can be found at:

“Conditional Multivariate Elliptical Copulas to Model Residential Load Profiles From Smart Meter Data,” E.M. (Mauricio) Salazar Duque, P.P. Vergara, P.H. Nguyen, A. van der Molen and J. G. Slootweg, in IEEE Transactions on Smart Grid, vol. 12, no. 5, pp. 4280-4294, Sept. 2021, doi: 10.1109/TSG.2021.3078394. link

How to contact us

Any questions, suggestions or collaborations contact Mauricio Salazar at <e.m.salazar.duque@tue.nl>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multicopula-0.0.2.tar.gz (30.2 kB view details)

Uploaded Source

Built Distribution

multicopula-0.0.2-py3-none-any.whl (30.5 kB view details)

Uploaded Python 3

File details

Details for the file multicopula-0.0.2.tar.gz.

File metadata

  • Download URL: multicopula-0.0.2.tar.gz
  • Upload date:
  • Size: 30.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for multicopula-0.0.2.tar.gz
Algorithm Hash digest
SHA256 546bd1de0be0b69250eed042a198e75b2e1e647a96f910804877872d0eda8882
MD5 3cfa750e200a31cff34b8e1af161b0a1
BLAKE2b-256 1400f81fec6f77a95929118dd787ea36df0e2999cc2a3b9f9069f801771c0b5f

See more details on using hashes here.

File details

Details for the file multicopula-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: multicopula-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 30.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for multicopula-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 0ab7188307483f90b960df23876121240c8bef7e0cfa91d9ae3511ada87dc88d
MD5 0dabf5f99c470782cd72ad6a6acd6386
BLAKE2b-256 523240d67fed3f48da3fc80b620b6eea591271d98980ba4dfdecfffdfb3e84dc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page