Skip to main content

Package for plotting multidirectional graphs

Project description

Multidirectional Graph

PyPI version codecov

Multidirectional Graph is a Python package that allows you to easily create graphs with multiple evaluation criteria, such as good, neutral, and bad.

Installation

You can install Multidirectional Graph using pip:

pip install multidirectional-graph

Usage

Here is an example of how to use Multidirectional Graph:

from multidirectional_graph import MultidirectionalGraph

data = {
    "Leitura": {
        "categ 1A": 5,
        "categ 1B": 9,
        "categ 1C": 5,
    },
    "Escrita": {
        "categ 2A": 2,
        "categ 2B": 4,
        "categ 2C": 9,
        "categ 2D": 3,
    },
    "Nome extremamente grande\nque não cabe no espaço": {
        "categ 3A": 6,
        "categ 3B": 7,
    },
    "Listening": {
        "categ 4A": 2,
        "categ 4B": 3,
    },
}


added_data = {
    "categ 1A": 4,
    "categ 1B": 5,
    "categ 1C": 4,
    "categ 2A": 3,
    "categ 2B": 3,
    "categ 2C": 7,
    "categ 2D": 2,
    "categ 3A": 7,
    "categ 3B": 6,
    "categ 4A": 3,
    "categ 4B": 2,
}

graph = MultidirectionalGraph(
    data,
    tipo_avaliacao = "Lingua Inglesa",
    figsize=(5.5,15),
    main_plot_color="#902020",
    category_fontsize=12,
    group_title_fontsize=10,
)

graph.add_values(added_data, label="Autoavaliação")

fig = graph.plot()

fig.savefig("images/teste.png", dpi=100, bbox_inches='tight')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multidirectional_graph-0.1.7.tar.gz (2.5 MB view details)

Uploaded Source

Built Distribution

multidirectional_graph-0.1.7-py3-none-any.whl (2.6 MB view details)

Uploaded Python 3

File details

Details for the file multidirectional_graph-0.1.7.tar.gz.

File metadata

File hashes

Hashes for multidirectional_graph-0.1.7.tar.gz
Algorithm Hash digest
SHA256 4f39c77293f0271f7755ace1692c5e718a4ad3a4d3ca37624b7354cd11d10e4b
MD5 957803ec1deaa5c44f47b9beac17702c
BLAKE2b-256 4dd413ea6cea3d12b1e3231f27d0f548071ceead105dc5e74847b9ecd36f1cd5

See more details on using hashes here.

File details

Details for the file multidirectional_graph-0.1.7-py3-none-any.whl.

File metadata

File hashes

Hashes for multidirectional_graph-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 d8c137ac4fae5efd5e4c44fc02afcd5219e00f804eaad5729bfd831ce347bc02
MD5 7c8871c02aad85a5e2322fafc7b5af71
BLAKE2b-256 6c442c856cad1c3810e3abbbc9a8314d3202027e2722b28811aade0cc4378e81

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page