Skip to main content

Convenience wrappers around numpy histograms

Project description

https://github.com/JelleAalbers/multihist/actions/workflows/tests.yml/badge.svg

https://github.com/JelleAalbers/multihist

Thin wrapper around numpy’s histogram and histogramdd.

Numpy has great histogram functions, which return (histogram, bin_edges) tuples. This package wraps these in a class with methods for adding new data to existing histograms, take averages, projecting, etc.

For 1-dimensional histograms you can access cumulative and density information, as well as basic statistics (mean and std). For d-dimensional histograms you can name the axes, and refer to them by their names when projecting / summing / averaging.

NB: For a faster and richer histogram package, check out hist from scikit-hep. Alternatively, look at its parent library boost-histogram, which has numpy-compatible features. Multihist was created back in 2015, long before those libraries existed.

Synopsis:

# Create histograms just like from numpy...
m = Hist1d([0, 3, 1, 6, 2, 9], bins=3)

# ...or add data incrementally:
m = Hist1d(bins=100, range=(-3, 4))
m.add(np.random.normal(0, 0.5, 10**4))
m.add(np.random.normal(2, 0.2, 10**3))

# Get the data back out:
print(m.histogram, m.bin_edges)

# Access derived quantities like bin_centers, normalized_histogram, density, cumulative_density, mean, std
plt.plot(m.bin_centers, m.normalized_histogram, label="Normalized histogram", drawstyle='steps')
plt.plot(m.bin_centers, m.density, label="Empirical PDF", drawstyle='steps')
plt.plot(m.bin_centers, m.cumulative_density, label="Empirical CDF", drawstyle='steps')
plt.title("Estimated mean %0.2f, estimated std %0.2f" % (m.mean, m.std))
plt.legend(loc='best')
plt.show()

# Slicing and arithmetic behave just like ordinary ndarrays
print("The fourth bin has %d entries" % m[3])
m[1:4] += 4 + 2 * m[-27:-24]
print("Now it has %d entries" % m[3])

# Of course I couldn't resist adding a canned plotting function:
m.plot()
plt.show()

# Create and show a 2d histogram. Axis names are optional.
m2 = Histdd(bins=100, range=[[-5, 3], [-3, 5]], axis_names=['x', 'y'])
m2.add(np.random.normal(1, 1, 10**6), np.random.normal(1, 1, 10**6))
m2.add(np.random.normal(-2, 1, 10**6), np.random.normal(2, 1, 10**6))
m2.plot()
plt.show()

# x and y projections return Hist1d objects
m2.projection('x').plot(label='x projection')
m2.projection(1).plot(label='y projection')
plt.legend()
plt.show()

History

0.6.5 (2022-01-26)

  • ‘model’ option for error bars, showing Poisson quantiles (#14)

  • Fix vmin/vmax for matplotlib >3.3, resume CI tests (#15)

  • Hist1d.data_for_plot returns numbers used in error calculation

0.6.4 (2021-01-17)

  • Prevent object array creation (#12)

0.6.3 (2020-01-22)

  • Feldman-Cousins errors for Hist1d.plot (#10)

0.6.2 (2020-01-15)

  • Fix rebinning for empty histograms (#9)

0.6.1 (2019-12-05)

  • Fixes for #7 (#8)

0.6.0 (2019-06-30)

  • Correct step plotting at edges, other plotting fixes

  • Histogram numpy structured arrays

  • Fix deprecation warnings (#6)

  • lookup_hist

  • .max() and .min() methods

  • percentile support for higher-dimensional histograms

  • Improve Hist1d.get_random (also randomize in bin)

0.5.4 (2017-09-20)

  • Fix issue with input from dask

0.5.3 (2017-09-18)

  • Fix python 2 support

0.5.2 (2017-08-08)

  • Fix colorbar arguments to Histdd.plot (#4)

  • percentile for Hist1d

  • rebin method for Histdd (experimental)

0.5.1 (2017-03-22)

  • get_random for Histdd no longer just returns bin centers (Hist1d does stil…)

  • lookup for Hist1d. When will I finally merge the classes…

0.5.0 (2016-10-07)

  • pandas.DataFrame and dask.dataframe support

  • dimensions option to Histdd to init axis_names and bin_centers at once

0.4.3 (2016-10-03)

  • Remove matplotlib requirement (still required for plotting features)

0.4.2 (2016-08-10)

  • Fix small bug for >=3 d histograms

0.4.1 (2016-17-14)

  • get_random and lookup for Histdd. Not really tested yet.

0.4.0 (2016-02-05)

  • .std function for Histdd

  • Fix off-by-one errors

0.3.0 (2015-09-28)

  • Several new histdd functions: cumulate, normalize, percentile…

  • Python 2 compatibility

0.2.1 (2015-08-18)

  • Histdd functions sum, slice, average now also work

0.2 (2015-08-06)

  • Multidimensional histograms

  • Axes naming

0.1.1-4 (2015-08-04)

Correct various rookie mistakes in packaging… Hey, it’s my first pypi package!

0.1 (2015-08-04)

Initial release

  • Hist1d, Hist2d

  • Basic test suite

  • Basic readme

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multihist-0.6.5.tar.gz (16.7 kB view details)

Uploaded Source

Built Distribution

multihist-0.6.5-py3-none-any.whl (14.6 kB view details)

Uploaded Python 3

File details

Details for the file multihist-0.6.5.tar.gz.

File metadata

  • Download URL: multihist-0.6.5.tar.gz
  • Upload date:
  • Size: 16.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for multihist-0.6.5.tar.gz
Algorithm Hash digest
SHA256 020e88693228d50b23b77fd59f2e998de8b1d7517f5697cec4d4616d7d011cdd
MD5 e411fd3cb227d2bc0066dcb1248c280f
BLAKE2b-256 73dfbcbe4c72f03c4cb0f550329d6148628fe1f81f7da95d3c2afb867fb437f4

See more details on using hashes here.

File details

Details for the file multihist-0.6.5-py3-none-any.whl.

File metadata

  • Download URL: multihist-0.6.5-py3-none-any.whl
  • Upload date:
  • Size: 14.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for multihist-0.6.5-py3-none-any.whl
Algorithm Hash digest
SHA256 f5fcce0712706c99a462cb19580fc37ffc1a6665e490a841705ea1b9d029edf9
MD5 57c22febb099929db74cd1cd5951fd86
BLAKE2b-256 8b816a9848217ca43ef6930c9ec8abde2e0d8a40c4078875cb26799b185ef82f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page