Convenience wrappers around numpy histograms
Project description
https://github.com/JelleAalbers/multihist
Thin wrapper around numpy’s histogram and histogramdd.
Numpy has great histogram functions, which return (histogram, bin_edges) tuples. This package wraps these in a class with methods for adding new data to existing histograms, take averages, projecting, etc.
For 1-dimensional histograms you can access cumulative and density information, as well as basic statistics (mean and std). For d-dimensional histograms you can name the axes, and refer to them by their names when projecting / summing / averaging.
NB: For a faster and richer histogram package, check out hist from scikit-hep. Alternatively, look at its parent library boost-histogram, which has numpy-compatible features. Multihist was created back in 2015, long before those libraries existed.
Synopsis:
# Create histograms just like from numpy... m = Hist1d([0, 3, 1, 6, 2, 9], bins=3) # ...or add data incrementally: m = Hist1d(bins=100, range=(-3, 4)) m.add(np.random.normal(0, 0.5, 10**4)) m.add(np.random.normal(2, 0.2, 10**3)) # Get the data back out: print(m.histogram, m.bin_edges) # Access derived quantities like bin_centers, normalized_histogram, density, cumulative_density, mean, std plt.plot(m.bin_centers, m.normalized_histogram, label="Normalized histogram", drawstyle='steps') plt.plot(m.bin_centers, m.density, label="Empirical PDF", drawstyle='steps') plt.plot(m.bin_centers, m.cumulative_density, label="Empirical CDF", drawstyle='steps') plt.title("Estimated mean %0.2f, estimated std %0.2f" % (m.mean, m.std)) plt.legend(loc='best') plt.show() # Slicing and arithmetic behave just like ordinary ndarrays print("The fourth bin has %d entries" % m[3]) m[1:4] += 4 + 2 * m[-27:-24] print("Now it has %d entries" % m[3]) # Of course I couldn't resist adding a canned plotting function: m.plot() plt.show() # Create and show a 2d histogram. Axis names are optional. m2 = Histdd(bins=100, range=[[-5, 3], [-3, 5]], axis_names=['x', 'y']) m2.add(np.random.normal(1, 1, 10**6), np.random.normal(1, 1, 10**6)) m2.add(np.random.normal(-2, 1, 10**6), np.random.normal(2, 1, 10**6)) m2.plot() plt.show() # x and y projections return Hist1d objects m2.projection('x').plot(label='x projection') m2.projection(1).plot(label='y projection') plt.legend() plt.show()
History
0.6.5 (2022-01-26)
‘model’ option for error bars, showing Poisson quantiles (#14)
Fix vmin/vmax for matplotlib >3.3, resume CI tests (#15)
Hist1d.data_for_plot returns numbers used in error calculation
0.6.4 (2021-01-17)
Prevent object array creation (#12)
0.6.3 (2020-01-22)
Feldman-Cousins errors for Hist1d.plot (#10)
0.6.2 (2020-01-15)
Fix rebinning for empty histograms (#9)
0.6.1 (2019-12-05)
Fixes for #7 (#8)
0.6.0 (2019-06-30)
Correct step plotting at edges, other plotting fixes
Histogram numpy structured arrays
Fix deprecation warnings (#6)
lookup_hist
.max() and .min() methods
percentile support for higher-dimensional histograms
Improve Hist1d.get_random (also randomize in bin)
0.5.4 (2017-09-20)
Fix issue with input from dask
0.5.3 (2017-09-18)
Fix python 2 support
0.5.2 (2017-08-08)
Fix colorbar arguments to Histdd.plot (#4)
percentile for Hist1d
rebin method for Histdd (experimental)
0.5.1 (2017-03-22)
get_random for Histdd no longer just returns bin centers (Hist1d does stil…)
lookup for Hist1d. When will I finally merge the classes…
0.5.0 (2016-10-07)
pandas.DataFrame and dask.dataframe support
dimensions option to Histdd to init axis_names and bin_centers at once
0.4.3 (2016-10-03)
Remove matplotlib requirement (still required for plotting features)
0.4.2 (2016-08-10)
Fix small bug for >=3 d histograms
0.4.1 (2016-17-14)
get_random and lookup for Histdd. Not really tested yet.
0.4.0 (2016-02-05)
.std function for Histdd
Fix off-by-one errors
0.3.0 (2015-09-28)
Several new histdd functions: cumulate, normalize, percentile…
Python 2 compatibility
0.2.1 (2015-08-18)
Histdd functions sum, slice, average now also work
0.2 (2015-08-06)
Multidimensional histograms
Axes naming
0.1.1-4 (2015-08-04)
Correct various rookie mistakes in packaging… Hey, it’s my first pypi package!
0.1 (2015-08-04)
Initial release
Hist1d, Hist2d
Basic test suite
Basic readme
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for multihist-0.6.5-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f5fcce0712706c99a462cb19580fc37ffc1a6665e490a841705ea1b9d029edf9 |
|
MD5 | 57c22febb099929db74cd1cd5951fd86 |
|
BLAKE2b-256 | 8b816a9848217ca43ef6930c9ec8abde2e0d8a40c4078875cb26799b185ef82f |