Skip to main content

A Python library to predict sentiments of textual data in English, Urdu or Roman Urdu

Project description

Multilingual Sentiment Classifier

A multilingual sentiment predictor which classifies English, Urdu or Roman Urdu text as Negative or Positive. It uses sentiment analysis algorithms of machine learning to classify negative and positive texts. We used 5 different algorithms and then calculated the sum of predictions to vote if a text is most likely to be negative or positive in sentiment.

Features

  • Multilingual Sentiment Analysis
  • Preprocesses text before passing to classifiers
  • Uses 5 different classifiers to vote if an input is positive or negative
  • Sentiment Analysis of Urdu, Roman Urdu and English languages
  • Can classify a single text
  • Can also classify a DataFrame

Requirements

This project uses a number of open source projects to work properly:

And of course this itself is open source with a public repository on GitHub.

Installation

Git:

git clone https://github.com/saman-azhar/multilingual-sentiment-classifier.git

Pip:

pip3 install multilingualsentimentclassifier

Module Example

Text:

from multilingualsentimentclassifier.methods import text_sentiment
import nltk

#download these 2 dependencies when running for first time
nltk.download('punkt')
nltk.download('wordnet')

# testing english negative
sentiment = text_sentiment.predict_sentiment("i AM sad and angry :@", "en")
print(sentiment)

# testing roman-urdu postitive
sentiment2 = text_sentiment.predict_sentiment("main boht khush houn", "in")
print(sentiment2)

# testing urdu negative
# you can directly print in console
print(text_sentiment.predict_sentiment("میں تم سے ناراض ہوں", "ur"))

DataFrame:

from multilingualsentimentclassifier.methods import dataframe_sentiment
import pandas as pd
import numpy as np

# dataframe w urdu text
df_ur = pd.DataFrame(np.array([["میں تم سے ناراض ہوں"], ["میں تم سے خوش ہوں"]]), columns=["text"])
print(dataframe_sentiment.predict_sentiment(df_ur, "ur"))

Note: This software does not detect language. You must enter the language of your input data. 1 indicates negative and 0 indicates positive.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multilingual-sentiment-classifier-1.6.tar.gz (83.2 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file multilingual-sentiment-classifier-1.6.tar.gz.

File metadata

  • Download URL: multilingual-sentiment-classifier-1.6.tar.gz
  • Upload date:
  • Size: 83.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for multilingual-sentiment-classifier-1.6.tar.gz
Algorithm Hash digest
SHA256 0a9f8dae28626aaf2bab016cd75f1c74aed6024766ea544cad41b2664fb151ed
MD5 71584ddc140f547b478ced40e482c9be
BLAKE2b-256 4ef12ac2c37520f57f9896129648496da41316231cbd44c0c0f52e558d5c40fc

See more details on using hashes here.

Provenance

File details

Details for the file multilingual_sentiment_classifier-1.6-py3-none-any.whl.

File metadata

  • Download URL: multilingual_sentiment_classifier-1.6-py3-none-any.whl
  • Upload date:
  • Size: 83.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for multilingual_sentiment_classifier-1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 d8bfa7494a24ae18ce55150779b466da8c3ecfa45e1dc4d2332d9d18408fc764
MD5 9e652336326effaa343ff9c008c7ca2b
BLAKE2b-256 373dd346c84ec7560eb80d68034f8f0b182ea9821c7e60ef81d377da1ee294e5

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page