Skip to main content

Multidimensional scanpath comparison

Project description

[![Build Status](https://travis-ci.com/adswa/multimatch.svg?branch=master)](https://travis-ci.com/adswa/multimatch) [![codecov](https://codecov.io/gh/adswa/multimatch/branch/master/graph/badge.svg)](https://codecov.io/gh/adswa/multimatch) [![Documentation](https://readthedocs.org/projects/multimatch/badge/?version=latest)](https://multimatch.readthedocs.io/en/latest/) [![PyPIversion](https://badge.fury.io/py/multimatch.svg)](https://badge.fury.io/py/multimatch) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Build status](https://ci.appveyor.com/api/projects/status/wrphckxqjrfut703?svg=true)](https://ci.appveyor.com/project/adswa/multimatch)

# multimatch ## Reimplementation of MultiMatch toolbox (Dewhurst et al., 2012) in Python.

The MultiMatch method proposed by Jarodzka, Holmqvist and Nyström (2010), implemented in Matlab as the MultiMatch toolbox and validated by Dewhurst and colleagues (2012) is a vector-based, multi-dimensional approach to compute scanpath similarity.

For a complete overview of this software, please take a look at the [Documentation](https://multimatch.readthedocs.io/en/latest)

The method represents scanpaths as geometrical vectors in a two-dimensional space: Any scanpath is build up of a vector sequence in which the vectors represent saccades, and the start and end position of saccade vectors represent fixations. Two such sequences (which can differ in length) are compared on the five dimensions ‘vector shape’, ‘vector length’ (saccadic amplitude), ‘vector position’, ‘vector direction’ and ‘fixation duration’ for a multidimensional similarity evaluation (all in range [0, 1] with 0 denoting maximal dissimilarity and 1 denoting identical scanpaths on the given measure). The original Matlab toolbox was kindly provided via email by Dr. Richard Dewhurst and the method was ported into Python with the intent of providing an open source alternative to the matlab toolbox.

### Installation instructions

It is recommended to use a dedicated virtualenv:

# create and enter a new virtual environment (optional) virtualenv –python=python3 ~/env/multimatch . ~/env/multimatch/bin/activate

multimatch can be installed via pip. To automatically install multimatch with all dependencies, use:

# install from pyPi pip install multimatch

### Support/Contributing

Bug reports, feedback, or any other contribution are always appreciated. To report a bug, request a feature, or ask a question, please open an [issue](https://github.com/adswa/multimatch/issues/new). [Pull requests](https://help.github.com/en/articles/creating-a-pull-request-from-a-fork) are always welcome.

### Examplary usage of multimatch in a terminal

required inputs: - two tab-separated files with nx3 fixation vectors (x coordinate in px, y coordinate in px, duration)

`` multimatch data/fixvectors/segment_10_sub-19.tsv data/fixvectors/segment_10_sub-01.tsv ``

optional inputs: - –screensize: in pixel, supply first x and then y dimension. The default size is 1280 x 720px

`` multimatch data/fixvectors/segment_10_sub-19.tsv data/fixvectors/segment_10_sub-01.tsv –screensize 1280 720 ``

if scanpath simplification should be performed, please specify in addition - –amplitude-threshold (-am) in px - –direction-threshold (-di) in degree - –duration-threshold (-du) in seconds

Example usage with grouping:

`` multimatch data/fixvectors/segment_10_sub-19.tsv data/fixvectors/segment_10_sub-01.tsv –direction-threshold 45.0 –duration-threshold 0.3 –amplitude-threshold 147.0 ``

### References:

Dewhurst, R., Nyström, M., Jarodzka, H., Foulsham, T., Johansson, R. & Holmqvist, K. (2012). It depends on how you look at it: scanpath comparison in multiple dimensions with MultiMatch, a vector-based approach. Behaviour Research Methods, 44(4), 1079-1100. [doi: 10.3758/s13428-012-0212-2.](https://doi.org/10.3758/s13428-012-0212-2)

Dijkstra, E. W. (1959). A note on two problems in connexion withgraphs. Numerische Mathematik, 1, 269–271. [https://doi.org/10.1007/BF01386390](https://doi.org/10.1007/BF01386390)

Jarodzka, H., Holmqvist, K., & Nyström, M. (eds.) (2010). A vector-based, multidimensional scanpath similarity measure. In Proceedings of the 2010 symposium on eye-tracking research & applications (pp. 211-218). ACM. [doi: 10.1145/1743666.1743718](https://doi.org/10.1145/1743666.1743718)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multimatch-0.1.0.tar.gz (21.2 kB view details)

Uploaded Source

Built Distribution

multimatch-0.1.0-py3-none-any.whl (21.6 kB view details)

Uploaded Python 3

File details

Details for the file multimatch-0.1.0.tar.gz.

File metadata

  • Download URL: multimatch-0.1.0.tar.gz
  • Upload date:
  • Size: 21.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.16

File hashes

Hashes for multimatch-0.1.0.tar.gz
Algorithm Hash digest
SHA256 59ff0204858d19831418569ce63974f2fa4e5f82661901569b1a1aaefb1a9f96
MD5 6dd32db86d0658426024a723e7a912f1
BLAKE2b-256 bc65b67b874e6cfcc1d05c8e3d5b2c24d666b56caee27d5faf7723217970add1

See more details on using hashes here.

File details

Details for the file multimatch-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: multimatch-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 21.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.16

File hashes

Hashes for multimatch-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 879835e7b82c1ac6c1822aeac3a167211942c1ad2ecec85822ffe5c3e8cb8dee
MD5 e54208cb31459b04eeba43bf61c0f235
BLAKE2b-256 e7442eb208d2edf0e89c47b8915edd5cd630edd700eb16fba06da02ca305b5ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page