Skip to main content

Monte Carlo Tree Search for multiple teams

Project description

MultiMCTS

MultiMCTS is a Python package that implements the Monte Carlo Tree Search algorithm for board games played by any number of players. With MultiMCTS, you can create AI for any game merely by knowing the rules -- no strategy needed!

Features

  • Efficient (largely C-compiled) MCTS implementation
  • Support for any number of players/teams
  • Easily create AI for any board game

Usage

For your game, you will need to:

  • Represent a game state in code
  • Identify all legal moves
  • Determine if the game is over and who won

You do NOT need to:

  • Understand strategy
  • Have domain knowledge
  • Evaluate the favorability of a game state

You can install with pip.

pip install multimcts

To use MultiMCTS, you must first define your game by subclassing GameState and implementing the required methods (see the Tic-Tac-Toe example):

  • get_current_team -- Returns the current team.
  • get_legal_moves -- Returns a list of legal moves. Moves can be any data structure.
  • make_move -- Returns a copy of the current state after performing the given move (one from get_legal_moves).
  • is_terminal -- Returns whether the game is over.
  • get_reward -- Returns the reward given to the team that played the game-ending move.

Then you can use MCTS to search for the best move. It will search until your defined limit is reached. The following shows how to simulate a game using MCTS:

from multimcts import MCTS, GameState

class MyGameState(GameState):
    # your implementation here...
    pass

mcts = MCTS()                               # Create an MCTS agent.
state = MyGameState()                       # Set up a new game.

while not state.is_terminal():              # Continue until the game is over.
    print(state)                            # Print the current game state (implementing GameState.__repr__ might be helpful).
    state = mcts.search(state, max_time=1)  # Play the best move found after 1 second.

print(state)                                # Print the final game state.

Development

  1. Clone the MultiMCTS repo.
    git clone https://github.com/taylorvance/multimcts.git
    cd multimcts/
    
  2. Make changes to multimcts/mcts.pyx or other files. Then build a distribution.
    python setup.py sdist
    
  3. Install the updated package to use in your projects.
    pip install dist/multimcts-0.1.0.tar.gz
    
    Replace multimcts-0.1.0 with the actual filename and version from the dist/ directory.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multimcts-0.6.4.tar.gz (232.7 kB view details)

Uploaded Source

Built Distribution

multimcts-0.6.4-cp39-cp39-macosx_10_9_universal2.whl (168.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file multimcts-0.6.4.tar.gz.

File metadata

  • Download URL: multimcts-0.6.4.tar.gz
  • Upload date:
  • Size: 232.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for multimcts-0.6.4.tar.gz
Algorithm Hash digest
SHA256 ef3158fb47476c80918a398099a8e507f1b1f1ba65c35c142e9362a4d107d347
MD5 fd8a55badc0aae51982defd36f658735
BLAKE2b-256 30980f0506ef424e7455d00eeb6704a21566110a4e2a30cd809020d794a1bbfd

See more details on using hashes here.

File details

Details for the file multimcts-0.6.4-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for multimcts-0.6.4-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cbab7c51557e3a7ed060656e0e3c8dc523e93428717a437616b978fc0194e2de
MD5 0f2f044181a9536d95ef24da64979bda
BLAKE2b-256 d9c417631a5a6f5290682e3e98fdb3d0e6b190ca8c8cd68d75fd6454321683bd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page