Skip to main content

Monte Carlo Tree Search for multiple teams

Project description

MultiMCTS

MultiMCTS is a Python package that implements the Monte Carlo Tree Search algorithm for board games played by any number of players. With MultiMCTS, you can create AI for any game merely by knowing the rules -- no strategy needed!

Features

  • Efficient (largely C-compiled) MCTS implementation
  • Support for any number of players/teams
  • Easily create AI for any board game

Usage

For your game, you will need to:

  • Represent a game state in code
  • Identify all legal moves
  • Determine if the game is over and who won

You do NOT need to:

  • Understand strategy
  • Have domain knowledge
  • Evaluate the favorability of a game state

You can install with pip.

pip install multimcts

To use MultiMCTS, you must first define your game by subclassing GameState and implementing the required methods (see the Tic-Tac-Toe example):

  • get_current_team -- Returns the current team.
  • get_legal_moves -- Returns a list of legal moves. Moves can be any data structure.
  • make_move -- Returns a copy of the current state after performing the given move (one from get_legal_moves).
  • is_terminal -- Returns whether the game is over.
  • get_reward -- Returns the reward given to the team that played the game-ending move.

Then you can use MCTS to search for the best move. It will search until your defined limit is reached. The following shows how to simulate a game using MCTS:

from multimcts import MCTS, GameState

class MyGameState(GameState):
    # your implementation here...
    pass

mcts = MCTS()                               # Create an MCTS agent.
state = MyGameState()                       # Set up a new game.

while not state.is_terminal():              # Continue until the game is over.
    print(state)                            # Print the current game state (implementing GameState.__repr__ might be helpful).
    state = mcts.search(state, max_time=1)  # Play the best move found after 1 second.

print(state)                                # Print the final game state.

Development

  1. Clone the MultiMCTS repo.
    git clone https://github.com/taylorvance/multimcts.git
    cd multimcts/
    
  2. Make changes to multimcts/mcts.pyx or other files. Then build a distribution.
    python setup.py sdist
    
  3. Install the updated package to use in your projects.
    pip install dist/multimcts-0.1.0.tar.gz
    
    Replace multimcts-0.1.0 with the actual filename and version from the dist/ directory.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multimcts-0.5.1.tar.gz (228.7 kB view details)

Uploaded Source

Built Distribution

multimcts-0.5.1-cp39-cp39-macosx_10_9_universal2.whl (166.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file multimcts-0.5.1.tar.gz.

File metadata

  • Download URL: multimcts-0.5.1.tar.gz
  • Upload date:
  • Size: 228.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for multimcts-0.5.1.tar.gz
Algorithm Hash digest
SHA256 87ba72a41761c64a2ed6160ccc38b2bc9055e1fa4c4b1c40828ad358943152a8
MD5 8e43f4ccf8e59af933b3738338e8583c
BLAKE2b-256 1474d50f543309560acd0c8fba56b3937865929b2cb74e2c13fbb7fa4e86ae36

See more details on using hashes here.

File details

Details for the file multimcts-0.5.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for multimcts-0.5.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f7a7f8c200506b4252564d554d22f62df9a31d006ea0426cf25723cd98c107bd
MD5 b960ddafdc2b8a3f7bc5d418b0ffd6a2
BLAKE2b-256 8ae3e13e38368c659355b996dc7c915cd038104dc81bd9a08e7e237282a1933e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page