A collection of multimodal datasets multimodal for research.
Project description
multimodal
A collection of multimodal (vision and language) datasets and visual features for deep learning research. See the Documentation.
Pretrained models
- ALBEF
from multimodal.models import ALBEF
albef = ALBEF.from_pretrained()
Visual Features
Currently it supports the following visual features (downloaded automatically):
- COCO Bottom-Up Top-Down features (10-100)
- COCO Bottom-Up Top-Down features (36)
Datasets
It also supports the following datasets, with their evaluation metric (VQA evaluation metric)
-
VQA v1
-
VQA v2
-
VQA-CP v1
-
VQA-CP v2
Note that when instanciating those datasets, large data might be downloaded. You can always specify the dir_data
argument when instanciating, or you can set the environment variable MULTIMODAL_DATA_DIR
so that all data always goes to the specified directory.
Models
- Bottom-Up and Top-Down attention (UpDown)
- ALBEF (pretrained model)
WordEmbeddings
And also word embeddings (either from scratch, or pretrained from torchtext, that can be fine-tuned).
Simple Usage
To install the library, run pip install multimodal
. It is supported for python 3.6 and 3.7.
Visual Features
Available features are COCOBottomUpFeatures
>>> from multimodal.features import COCOBottomUpFeatures
>>> bottomup = COCOBottomUpFeatures(features="trainval_36", dir_data="/tmp")
>>> image_id = 13455
>>> feats = bottomup[image_id]
>>> print(feats.keys())
['image_w', 'image_h', 'num_boxes', 'boxes', 'features']
>>> print(feats["features"].shape) # numpy array
(36, 2048)
Datasets
VQA
Available VQA datasets are VQA, VQA v2, VQA-CP, VQA-CP v2, and their associated pytorch-lightinng data modules.
You can run a simple evaluation of predictions using the following commands. Data will be downloaded and processed if necessary. Predictions must have the same format as the official VQA result format (see https://visualqa.org/evaluation.html).
# vqa 1.0
python -m multimodal vqa-eval -p <path/to/predictions> -s "val"
# vqa 2.0
python -m multimodal vqa2-eval -p <path/to/predictions> -s "val"
# vqa-cp 1.0
python -m multimodal vqacp-eval -p <path/to/predictions> -s "val"
# vqa-cp 2.0
python -m multimodal vqacp2-eval -p <path/to/predictions> -s "val"
To use the datasets for your training runs, use the following:
# Visual Question Answering
from multimodal.datasets import VQA, VQA2, VQACP, VQACP2
dataset = VQA(split="train", features="coco-bottomup", dir_data="/tmp")
item = dataset[0]
dataloader = torch.utils.data.Dataloader(dataset, collate_fn = VQA.collate_fn)
for batch in dataloader:
out = model(batch)
# training code...
We also provide a pytorch_lightning datamodule, available here: multimodal.datasets.lightning.VQADataModule
and similarly for other VQA datasets.
See documentation.
CLEVR
from multimodal.datasets import CLEVR
# Warning, this will download a 18Gb file.
# You can specify the multimodal data directory
# by providing the dir_data argument
clevr = CLEVR(split="train")
Pretrained Tokenizer and Word embeddings
Word embeddings are implemented as pytorch modules. Thus, they are trainable if needed, but can be freezed.
Pretrained embedding weights are downloaded with torchtext. The following pretrained embeddings are available: charngram.100d, fasttext.en.300d, fasttext.simple.300d, glove.42B.300d, glove.6B.100d, glove.6B.200d, glove.6B.300d, glove.6B.50d, glove.840B.300d, glove.twitter.27B.100d, glove.twitter.27B.200d, glove.twitter.27B.25d, glove.twitter.27B.50d
Usage
from multimodal.text import PretrainedWordEmbedding
from multimodal.text import BasicTokenizer
# tokenizer converts words to tokens, and to token_ids. Pretrained tokenizers
# save token_ids from an existing vocabulary.
tokenizer = BasicTokenizer.from_pretrained("pretrained-vqa")
# Pretrained word embedding, freezed. A list of tokens as input to initialize embeddings.
wemb = PretrainedWordEmbedding.from_pretrained("glove.840B.300d", tokens=tokenizer.tokens, freeze=True)
embeddings = wemb(tokenizer(["Inputs are batched, and padded. This is the first batch item", "This is the second batch item."]))
Models
The Bottom-Up and Top-Down Attention for VQA model is implemented.
To train, run python multimodal/models/updown.py --dir-data <path_to_multimodal_data> --dir-exp logs/vqa2/updown
It uses pytorch lightning, with the class multimodal.models.updown.VQALightningModule
You can check the code to see other parameters.
You can train the model manually:
from multimodal.models import UpDownModel
from multimodal.datasets.import VQA2
from multimodal.text import BasicTokenizer
vqa_tokenizer = BasicTokenizer.from_pretrained("pretrained-vqa2")
train_dataset = VQA(split="train", features="coco-bottomup", dir_data="/tmp")
train_loader = torch.utils.data.Dataloader(train_dataset, collate_fn = VQA.collate_fn)
updown = UpDownModel(num_ans=len(train_dataset.answers))
for batch in train_loader:
batch["question_tokens"] = vqa_tokenizer(batch["question"])
out = updown(batch)
logits = out["logits"]
loss = F.binary_cross_entropy_with_logits(logits, batch["label"])
loss.backward()
optimizer.step()
Or train it with Pytorch Lightning:
from multimodal.datasets.lightning import VQA2DataModule
from multimodal.models.lightning import VQALightningModule
from multimodal.text import BasicTokenizer
import pytorch_lightning as pl
tokenizer = BasicTokenizer.from_pretrained("pretrained-vqa2")
vqa2 = VQA2DataModule(
features="coco-bottomup-36",
batch_size=512,
num_workers=4,
)
vqa2.prepare_data()
num_ans = len(vqa2.num_ans)
updown = UpDownModel(
num_ans=num_ans,
tokens=tokenizer.tokens, # to init word embeddings
)
lightningmodel = VQALightningModule(
updown,
train_dataset=vqa2.train_dataset,
val_dataset=vqa2.val_dataset,
tokenizer=tokenizer,
)
trainer = pl.Trainer(
gpus=1,
max_epochs=30,
gradient_clip_val=0.25,
default_root_dir="logs/updown",
)
trainer.fit(lightningmodel, datamodule=vqa2)
API
Features
features = COCOBottomUpFeatures(
features="test2014_36", # one of [trainval2014, trainval2014_36, test2014, test2014_36, test2015, test2015_36]
dir_data=None # directory for multimodal data. By default, in the application directory for multimodal.
)
Then, to get the features for a specific image:
feats = features[image_id]
The features have the following keys :
{
"image_id": int,
"image_w": int,
"image_h" : int,
"num_boxes": int
"boxes": np.array(N, 4),
"features": np.array(N, 2048),
}
Datasets
# Datasets
dataset = VQA(
dir_data=None, # dir where multimodal data will be downloaded. Default is HOME/.multimodal
features=None, # which visual features should be used. Choices: coco-bottomup or coco-bottomup-36
split="train", # "train", "val" or "test"
min_ans_occ=8, # Minimum occurences to keep an answer.
dir_features=None, # Specific directory for features. By default, they will be located in dir_data/features.
label="multilabel", # "multilabel", or "best". This changes the shape of the ground truth label (class number for best, or tensor of scores for multilabel)
)
item = dataset[0]
The item
will contain the following keys :
>>> print(item.keys())
{'image_id',
'question_id',
'question_type',
'question', # full question (not tokenized, tokenization is done in the WordEmbedding class)
'answer_type', # yes/no, number or other
'multiple_choice_answer',
'answers',
'image_id',
'label', # either class label (if label="best") or target class scores (tensor of N classes).
'scores', # VQA scores for every answer
}
Word embeddings
# Word embedding from scratch, and trainable.
wemb = Wordembedding(
tokens, # Token list. We recommend using torchtext basic_english tokenizer.
dim=50, # Dimension for word embeddings.
freeze=False # freeze=True means that word embeddings will be set with `requires_grad=False`.
)
wemb = WordEmbedding.from_pretrained(
name="glove.840B.300d", # embedding name (from torchtext)
tokens, # tokens to load from the word embedding.
max_tokens=None, # if set to N, only the N most common tokens will be loaded.
freeze=True, # same parameter as default model.
dir_data=None, # dir where data will be downloaded. Default is multimodal directory in apps dir.
)
# Forward pass
sentences = ["How many people are in the picture?", "What color is the car?"]
wemb(
sentences,
tokenized=False # set tokenized to True if sentence is already tokenized.
)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file multimodal-0.0.13.tar.gz
.
File metadata
- Download URL: multimodal-0.0.13.tar.gz
- Upload date:
- Size: 60.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.21.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3bdc09a963a31dcbf24490e1d14a9fa9b456bfd39d5e9c4e088c546ba3f52585 |
|
MD5 | 1aecbf1fb7b22b96b7e1a6cc875ba197 |
|
BLAKE2b-256 | 2b11b134e064bc3d7b42a06c006ee10c094e25d2a6de7e31be501d186e44dfab |
File details
Details for the file multimodal-0.0.13-py3-none-any.whl
.
File metadata
- Download URL: multimodal-0.0.13-py3-none-any.whl
- Upload date:
- Size: 70.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.21.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | edec889db50db517027dcdccb2109fe08a40a35190a4b211c9888c7d5a355e5c |
|
MD5 | c9d7ab9151e36b58699d539db0de335c |
|
BLAKE2b-256 | b6f7c5352839c9f30ee422bd80007503d16e7d4acec36e33d21bfee3ae794ba6 |