Skip to main content

Pytorch reimplementation of https://www.nature.com/articles/s41467-020-20249-2 for streamlined multidomain data integration and translation based on cross-modal autoencoders architectures

Project description

ChemBioMultimodalAutoencoders

CI/CD tests builds
Package PyPI - Version DownloadsPyPI - Python Version
Meta Hatch project code style - black types - Mypy imports - isort LICENSE

a package for streamlined multidomain data integration and translation based on cross-modal autoencoder architecture[1]. It is designed to add new data modalities and train models for seamless translation.

Installation

To install the package, simply run:

pip install multimodal-autoencoders

(optional) To make sure you have all the dependencies, you can create an appropriate environment using the environment.yml file with Conda:

conda env create -f environment.yml

Usage

An example on how to train and use the multimodal autoencoders can be found in relevant notebooks in examples

Usage is centered around a JointTraner instance (defined in multimodal_autoencoders/trainer/joint_trainer.py). A central part of the whole architecture is that different components need to be associated to the individual modalities. This is done through python dictionaries, with which most users will be familiar with.

Authors

Thibault Bechtler (th.bechtler@gmail.com) & Bartosz Baranowski (bartosz.baranowski@novartis.com)

Contributors: Michal Pikusa (michal.pikusa@novartis.com), Steffen Renner (steffen.renner@novartis.com)

References

[1] Yang, K.D., Belyaeva, A., Venkatachalapathy, S. et al. Multi-domain translation between single-cell imaging and sequencing data using autoencoders. Nat Commun 12, 31 (2021). https://doi.org/10.1038/s41467-020-20249-2

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multimodal_autoencoders-0.2.3.tar.gz (20.6 kB view details)

Uploaded Source

Built Distribution

multimodal_autoencoders-0.2.3-py2.py3-none-any.whl (23.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file multimodal_autoencoders-0.2.3.tar.gz.

File metadata

File hashes

Hashes for multimodal_autoencoders-0.2.3.tar.gz
Algorithm Hash digest
SHA256 77c9a8fadddb9f459601816ff5c5d2069247eab2a73b4bdd288b0a905aa095e6
MD5 2a0285e5acac0f69fd64e3b1d78bcfc0
BLAKE2b-256 1cd0bb45f2e5b9a74000fb898074d23e494358d2ba209d051aab101052ecc0aa

See more details on using hashes here.

Provenance

File details

Details for the file multimodal_autoencoders-0.2.3-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for multimodal_autoencoders-0.2.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 c5b47fcaa7a552f00171210124eacd331c25e78f029b9229cd561d24ecffc93f
MD5 579895e0144e06434e3ba2a9b1712647
BLAKE2b-256 f1f9890e6a97f95deed6e9dc6cd41570679a4db3e8506c40043b68d1c972dba5

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page