Skip to main content

it's implimentation of multiple loss

Project description

tf-multilabelloss

Create a multilabelloss which can help as when we working on multilabel classification model. meaning of multilabel classification is that:-

  • develop a single model that will provide binary classification predictions for each of the num_class

  • In other words it will predict 'positive' or 'negative' for all class.

how to use tf-multilabelloss

from multi_label_loss.multilabelloss import MultilabelLoss
predictions = Dense(len(num_class), activation="sigmoid")(x)
model = Model(inputs=base_model.input, outputs=predictions)
model.compile(optimizer='adam', loss=MultilabelLoss(num_class),metrics=['binary_accuracy'])

installation

pip install tf-multilabelloss

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multiple_loss-0.0.6.tar.gz (14.4 kB view details)

Uploaded Source

Built Distribution

multiple_loss-0.0.6-py3-none-any.whl (15.0 kB view details)

Uploaded Python 3

File details

Details for the file multiple_loss-0.0.6.tar.gz.

File metadata

  • Download URL: multiple_loss-0.0.6.tar.gz
  • Upload date:
  • Size: 14.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for multiple_loss-0.0.6.tar.gz
Algorithm Hash digest
SHA256 8fb500292f5939917104df7f64c6afe5a787b1b6b4f69d4e1564dac7252860f2
MD5 251638ead4512ba201f3c8b4123dedcf
BLAKE2b-256 70c48b14e5e3b6c90171de3e779967927bc258ce65704b97a6eef94277033edc

See more details on using hashes here.

File details

Details for the file multiple_loss-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: multiple_loss-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 15.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for multiple_loss-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 4ca3c04b613a88b507526bf3dbdf6de3838f4f78d9bcbba8c02c7e47947405f7
MD5 b18c8044665d5151e617a10888dfd45c
BLAKE2b-256 a8e19d6d8bdf902f12339b3e6efed5e1698493b5873e2bcbf2f9578ba4bdd479

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page