it's implimentation of multiple loss
Project description
tf-multilabelloss
Create a multilabelloss which can help as when we working on multilabel classification model. meaning of multilabel classification is that:-
-
develop a single model that will provide binary classification predictions for each of the num_class
-
In other words it will predict 'positive' or 'negative' for all class.
how to use tf-multilabelloss
from multi_label_loss.multilabelloss import MultilabelLoss
predictions = Dense(len(num_class), activation="sigmoid")(x)
model = Model(inputs=base_model.input, outputs=predictions)
model.compile(optimizer='adam', loss=MultilabelLoss(num_class),metrics=['binary_accuracy'])
installation
pip install tf-multilabelloss
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
multiple_loss-0.0.6.tar.gz
(14.4 kB
view details)
Built Distribution
File details
Details for the file multiple_loss-0.0.6.tar.gz
.
File metadata
- Download URL: multiple_loss-0.0.6.tar.gz
- Upload date:
- Size: 14.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8fb500292f5939917104df7f64c6afe5a787b1b6b4f69d4e1564dac7252860f2 |
|
MD5 | 251638ead4512ba201f3c8b4123dedcf |
|
BLAKE2b-256 | 70c48b14e5e3b6c90171de3e779967927bc258ce65704b97a6eef94277033edc |
File details
Details for the file multiple_loss-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: multiple_loss-0.0.6-py3-none-any.whl
- Upload date:
- Size: 15.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4ca3c04b613a88b507526bf3dbdf6de3838f4f78d9bcbba8c02c7e47947405f7 |
|
MD5 | b18c8044665d5151e617a10888dfd45c |
|
BLAKE2b-256 | a8e19d6d8bdf902f12339b3e6efed5e1698493b5873e2bcbf2f9578ba4bdd479 |