Skip to main content

A multiple-tau algorithm for Python/NumPy

Project description

PyPI Version Tests Status Coverage Status Docs Status

Multiple-tau correlation is computed on a logarithmic scale (less data points are computed) and is thus much faster than conventional correlation on a linear scale such as numpy.correlate.

Installation

The only requirement for multipletau is Python 3.x and NumPy. Install multipletau from the Python package index:

pip install multipletau

Documentation

The documentation, including the reference and examples, is available on readthedocs.io.

Usage

import numpy as np
import multipletau
a = np.linspace(2,5,42)
v = np.linspace(1,6,42)
multipletau.correlate(a, v, m=2)
array([[   0.        ,  569.56097561],
       [   1.        ,  549.87804878],
       [   2.        ,  530.37477692],
       [   4.        ,  491.85812017],
       [   8.        ,  386.39500297]])

Citing

The multipletau package should be cited like this (replace “x.x.x” with the actual version of multipletau that you used and “DD Month YYYY” with a matching date).

Paul Müller (2012) Python multiple-tau algorithm (Version x.x.x) [Computer program]. Available at https://pypi.python.org/pypi/multipletau/ (Accessed DD Month YYYY)

You can find out what version you are using by typing (in a Python console):

>>> import multipletau
>>> multipletau.__version__
'0.4.0'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multipletau-0.4.1.tar.gz (94.8 kB view details)

Uploaded Source

Built Distribution

multipletau-0.4.1-py2.py3-none-any.whl (10.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file multipletau-0.4.1.tar.gz.

File metadata

  • Download URL: multipletau-0.4.1.tar.gz
  • Upload date:
  • Size: 94.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for multipletau-0.4.1.tar.gz
Algorithm Hash digest
SHA256 ae83f7e3615b8d6284b71df62927ba21b832d1e8b02c782aa05c175259ee54ef
MD5 f2675ffc708d0ba8f8121e5f7619cef3
BLAKE2b-256 95d7fecccb434dfda27460e3ee6dfc9be1e650389afafe302ae7fe59d3a86e5b

See more details on using hashes here.

File details

Details for the file multipletau-0.4.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for multipletau-0.4.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b97750c03b5d00ba56d90eeb5113f13216a04b65a2abb0f175cd55b85c4782f3
MD5 e8cc247ed3d049ff552fd391c7815487
BLAKE2b-256 cbb41c8108c7eb1bd1cc28045c9986709760ff4f758b3e31e0c17d1120f7e7fa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page