A Python library for multiplex imaging analysis
Project description
multiplex-imaging-pipeline
A pipeline for multiplex imaging analysis
Installation
From conda .env file
conda create -f .env
Usage
Create ome.tiff
Create from a folder of stitched .tif files (old CODEX)
Takes as input a directory containing stitched .tif images and creates and HTAN consortium compatible ome.tiff
mip make-ome --tif-directory </path/to/directory/with/tiffs/*.tif> --output-filepath </path/to/output.ome.tiff>
Create from a .qptiff file (new CODEX)
mip make-ome --input-tif </path/to/directory/with/qptiff/*.qptiff> --output-filepath </path/to/output.ome.tiff>
Create cell feature table
Takes a label image and ome.tiff as input, and outputs spatial features.
label image - .tif containing cell segmentation information. is a tiff where all background pixels have the value 0, and the pixels representing the location of a cell are given an integer label unique to that cell. This image can be generated by QiTissue.
mip generate-spatial-features --label-image </path/to/label/image.tif> --ome-tiff </path/to/*.ome.tiff> --output-prefix </path/to/output/directory>
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file multiplex-imaging-pipeline-0.0.1.tar.gz
.
File metadata
- Download URL: multiplex-imaging-pipeline-0.0.1.tar.gz
- Upload date:
- Size: 17.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 46a8ecf7f4c86af37dd47fe23da878e277f53fff6cb9746f41ec88b0a4b5b95a |
|
MD5 | ef88c23cc7e8b378a673d88883e6d6b5 |
|
BLAKE2b-256 | 81e611cb3356d3b9247dd46551c05edb8db2ae5efbf421620480523645b955e5 |