Evaluate predictive multiplicity
Project description
multiplicity
Library for evaluating predictive multiplicity of deep leearning models.
Setup
pip install multiplicity
Quickstart
The library provides a method to estimate a viable prediction range ---the minimum and maximum possible predictions--- within the Rashomon set ---a set of models that have epsilon-similar loss on some reference dataset.
import multiplicity
# Train binary classifier in torch.
x = ...
train_loader = ...
model = ...
model(x) # e.g., 0.75
# Specify how similar is the loss for models in the Rashomon set.
epsilon = 0.01
# Specify the loss function that defines the Rashomon set.
stopping_criterion = multiplicity.ZeroOneLossStoppingCriterion(train_loader)
# Compute viable prediction range.
lb, pred, ub = multiplicity.binary_viable_prediction_range(
model=model,
target_example=x,
stopping_criterion=stopping_criterion,
criterion_thresholds=epsilon,
)
# e.g., lb=0.71, pred=0.75, ub=0.88
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
multiplicity-0.0.1.tar.gz
(4.5 kB
view details)
Built Distribution
File details
Details for the file multiplicity-0.0.1.tar.gz
.
File metadata
- Download URL: multiplicity-0.0.1.tar.gz
- Upload date:
- Size: 4.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.10.12 Linux/6.5.0-21-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 804d613c101382caf3a628cea02b029142b3e693e4bf9ee65a479670e02dee7c |
|
MD5 | f22176f5f830605752d6a3787fb018c2 |
|
BLAKE2b-256 | 1db9f11d3f43c54c5705790e8b6a5d95815c8f92dfad6f96a1ccc20c45d847f9 |
File details
Details for the file multiplicity-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: multiplicity-0.0.1-py3-none-any.whl
- Upload date:
- Size: 5.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.10.12 Linux/6.5.0-21-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 17b4cd27cdacb867f1048d98210db6b4eedb7d5d789f1e749015c2255b050559 |
|
MD5 | 6a4960f90e9d3b9ad8ccf2e5f31eb629 |
|
BLAKE2b-256 | 591721b3fea700c5c2a2d3f1239df3331694218daf3f1e5d6d2d822a83debb2e |