Skip to main content

python package implementing a multivariate Horner scheme for efficiently evaluating multivariate polynomials

Project description

CI status documentation status https://img.shields.io/pypi/wheel/multivar-horner.svg pre-commit Total PyPI downloads latest version on PyPI JOSS status https://zenodo.org/badge/155578190.svg https://img.shields.io/badge/code%20style-black-000000.svg

multivar_horner is a python package implementing a multivariate Horner scheme (“Horner’s method”, “Horner’s rule”) for efficiently evaluating multivariate polynomials.

Quick Guide:

pip install multivar_horner

For efficiency this package is compiling the instructions required for polynomial evaluation to C by default. If you don’t have a C compiler (gcc or cc) installed you also need to install numba for using an alternative method:

pip install multivar_horner[numba]

Simple example:

import numpy as np
from multivar_horner import HornerMultivarPolynomial

# input parameters defining the polynomial
#   p(x) = 5.0 + 1.0 x_1^3 x_2^1 + 2.0 x_1^2 x_3^1 + 3.0 x_1^1 x_2^1 x_3^1
coefficients = np.array([[5.0], [1.0], [2.0], [3.0]], dtype=np.float64)
exponents = np.array([[0, 0, 0], [3, 1, 0], [2, 0, 1], [1, 1, 1]], dtype=np.uint32)

# [#ops=7] p(x) = x_1 (x_1 (x_1 (1.0 x_2) + 2.0 x_3) + 3.0 x_2 x_3) + 5.0
horner_polynomial = HornerMultivarPolynomial(coefficients, exponents)
x = np.array([-2.0, 3.0, 1.0], dtype=np.float64)
p_x = horner_polynomial(x)

For more refer to the documentation.

Also see: GitHub, PyPI, arXiv paper

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multivar_horner-3.0.4.tar.gz (46.1 kB view hashes)

Uploaded source

Built Distribution

multivar_horner-3.0.4-py3-none-any.whl (56.0 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page