Skip to main content

Detects differences between a Single Image and a List of Images (multiprocessing)

Project description

Detects differences between a Single Image and a List of Images (multiprocessing)

pip install multiwhacamole

Tested against Python 3.11 / Windows 10

INPUT

0.png

1.png

2.png

OUTPUT - comparison with 0.png

0.png

1.png

2.png

import cv2
from multiwhacamole import finddifferences
picturelist = [
	r"C:\Users\hansc\Downloads\dfsdfsdf\0.png",
	r"C:\Users\hansc\Downloads\dfsdfsdf\1.png",
	r"C:\Users\hansc\Downloads\dfsdfsdf\2.png",

]
singlepicture = r"C:\Users\hansc\Downloads\dfsdfsdf\0.png"
df = finddifferences(singlepicture, picturelist,
					 percentage=10,
					 interpolation=cv2.INTER_NEAREST,
					 cpus=5,
					 chunks=1,
					 draw_output=True,
					 usecache=True,
					 print_stdout=False,
					 print_stderr=True,
					 draw_color=(255, 255, 0),
					 thickness=2,
					 thresh=3,
					 maxval=255,
					 save_folder='c:\\testrecognition'
					 )

print(df)

#   aa_start_x aa_start_y aa_end_x aa_end_y aa_center_x aa_center_y aa_width aa_height aa_area                    aa_screenshot  aa_img_index
# 0       <NA>       <NA>     <NA>     <NA>        <NA>        <NA>     <NA>      <NA>    <NA>  [[[253 249 247]\n  [253 249 247             0
# 1         60        780      200      900         130         840      140       120   16800  [[[253 249 247]\n  [253 249 247             1
# 2        620        740      750      870         685         805      130       130   16900  [[[253 249 247]\n  [253 249 247             1
# 3         70        640      200      770         135         705      130       130   16900  [[[253 249 247]\n  [253 249 247             1
# 4       1060        370     1600      710        1330         540      540       340  183600  [[[253 249 247]\n  [253 249 247             1
# 5         10          0      250       90         130          45      240        90   21600  [[[253 249 247]\n  [253 249 247             1
# 6        580        640      620      750         600         695       40       110    4400  [[[  0 255 255]\n  [  0 255 255             2
# 7          0        300     1600      900         800         600     1600       600  960000  [[[  0 255 255]\n  [  0 255 255             2
# 8        900          0     1040       80         970          40      140        80   11200  [[[  0 255 255]\n  [  0 255 255             2
# 9          0          0      810       90         405          45      810        90   72900  [[[  0 255 255]\n  [  0 255 255             2


# If the DataFrame takes too long to print due to the screenshots, use: https://github.com/hansalemaos/PrettyColorPrinter

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multiwhacamole-0.10.tar.gz (59.5 kB view details)

Uploaded Source

Built Distribution

multiwhacamole-0.10-py3-none-any.whl (59.9 kB view details)

Uploaded Python 3

File details

Details for the file multiwhacamole-0.10.tar.gz.

File metadata

  • Download URL: multiwhacamole-0.10.tar.gz
  • Upload date:
  • Size: 59.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for multiwhacamole-0.10.tar.gz
Algorithm Hash digest
SHA256 dd56dc74679a3fcfcbfc2d1685aaf270a6b2fb996757f728f349a3281f60b700
MD5 991e6399dfb79c026dbeccaf8277fe27
BLAKE2b-256 74c18cc7215e9a3b80e14201f872aad4ac41889edddfac6460167467f96ca3e7

See more details on using hashes here.

File details

Details for the file multiwhacamole-0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for multiwhacamole-0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 c0005672ef1f5310bdfd617d5b84e9a62be109d2e9b82daca56336a309b40511
MD5 8fc15d54070c48a5539ab7fda60acdc7
BLAKE2b-256 f7e4e9b2990ca59a45e564f1c3469dfb7b72d74a06fdd296281ac41a80670d72

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page