Skip to main content

MUSICA is a Python library for performing computational simulations in atmospheric chemistry.

Project description

MUSICA

GitHub Releases License docker macOS ubuntu windows pip DOI PyPI version FAIR checklist badge

Multi-Scale Infrastructure for Chemistry and Aerosols

MUSICA is a collection of modeling software, tools, and grids, that allow for robust modeling of chemistry in Earth's atmosphere.

At present the project encompasses these components

  • TUV-x

    • A photolysis rate calculator
  • MICM

    • Model Independent Chemical Module

Available grids

Pre-made grids for use in MUSICA are available here.

Contributors guide

Checkout our software development plan to see how you can contribute new science to MUSICA software.

Developer Options

Specifying dependency versions via paramaterization at configure time

Introduced in Pull Request #124, it is possible for developers to specify which versions of various dependencies should be used. These options are currently limited to those dependencies managed via FetchContent. This change allows for more easily testing musica against changes committed in different repositories and branches. The environmental variables introduced are outlined in the following table.

CMake Dependency Variables

Musica Dependency Repository Branch, Tag or Hash
Google Test GOOGLETEST_GIT_REPOSITORY GOOGLETEST_GIT_TAG
MICM MICM_GIT_REPOSITORY MICM_GIT_TAG
TUV-X TUVX_GIT_REPOSITORY TUVX_GIT_TAG
PyBind11 PYBIND11_GIT_REPOSITORY PYBIND11_GIT_TAG

Example Usage

The following examples assume the working directory is a build/ directory inside the musica source directory.

Specifying a different version of tuv-x, to ensure a change won't break anything.

$ cmake .. \
    -DTUVX_GIT_REPOSITORY="https://github.com/WardF/tuv-x.git" \
    -DTUVX_GIT_TAG=test-fix

Specifying a specific version of tuv-x by has, but using the official repository.

$ cmake .. \
    -DTUVX_GIT_TAG=a6b2c4d8745

Citing MUSICA

MUSICA can be cited in at least two ways. The first is to cite the paper that defines the vision of the MUSICA software. The bibtex entry below can be used to generate a citaiton for this.

@Article { acom.software.musica-vision,
    author = "Gabriele G. Pfister and Sebastian D. Eastham and Avelino F. Arellano and Bernard Aumont and Kelley C. Barsanti and Mary C. Barth and Andrew Conley and Nicholas A. Davis and Louisa K. Emmons and Jerome D. Fast and Arlene M. Fiore and Benjamin Gaubert and Steve Goldhaber and Claire Granier and Georg A. Grell and Marc Guevara and Daven K. Henze and Alma Hodzic and Xiaohong Liu and Daniel R. Marsh and John J. Orlando and John M. C. Plane and Lorenzo M. Polvani and Karen H. Rosenlof and Allison L. Steiner and Daniel J. Jacob and Guy P. Brasseur",
    title = "The Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA)",
    journal = "Bulletin of the American Meteorological Society",
    year = "2020",
    publisher = "American Meteorological Society",
    address = "Boston MA, USA",
    volume = "101",
    number = "10",
    doi = "10.1175/BAMS-D-19-0331.1",
    pages= "E1743 - E1760",
    url = "https://journals.ametsoc.org/view/journals/bams/101/10/bamsD190331.xml"
}

At present MUSICA is on version zero. MUSICAv0 can be cited using the bibtex entry below. MUSICAv0 description and evaluation:

@Article{acom.software.musica,
    author = {Schwantes, Rebecca H. and Lacey, Forrest G. and Tilmes, Simone and Emmons, Louisa K. and Lauritzen, Peter H. and Walters, Stacy and Callaghan, Patrick and Zarzycki, Colin M. and Barth, Mary C. and Jo, Duseong S. and Bacmeister, Julio T. and Neale, Richard B. and Vitt, Francis and Kluzek, Erik and Roozitalab, Behrooz and Hall, Samuel R. and Ullmann, Kirk and Warneke, Carsten and Peischl, Jeff and Pollack, Ilana B. and Flocke, Frank and Wolfe, Glenn M. and Hanisco, Thomas F. and Keutsch, Frank N. and Kaiser, Jennifer and Bui, Thao Paul V. and Jimenez, Jose L. and Campuzano-Jost, Pedro and Apel, Eric C. and Hornbrook, Rebecca S. and Hills, Alan J. and Yuan, Bin and Wisthaler, Armin},
    title = {Evaluating the Impact of Chemical Complexity and Horizontal Resolution on Tropospheric Ozone Over the Conterminous US With a Global Variable Resolution Chemistry Model},
    journal = {Journal of Advances in Modeling Earth Systems},
    volume = {14},
    number = {6},
    pages = {e2021MS002889},
    doi = {https://doi.org/10.1029/2021MS002889},
    url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002889},
    eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2021MS002889},
    year = {2022}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

musica-0.8.1.tar.gz (428.8 kB view details)

Uploaded Source

Built Distributions

musica-0.8.1-cp312-cp312-win_amd64.whl (942.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

musica-0.8.1-cp312-cp312-win32.whl (722.6 kB view details)

Uploaded CPython 3.12 Windows x86

musica-0.8.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

musica-0.8.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

musica-0.8.1-cp312-cp312-macosx_11_0_arm64.whl (553.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

musica-0.8.1-cp312-cp312-macosx_10_15_x86_64.whl (614.4 kB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

musica-0.8.1-cp311-cp311-win_amd64.whl (941.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

musica-0.8.1-cp311-cp311-win32.whl (722.8 kB view details)

Uploaded CPython 3.11 Windows x86

musica-0.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

musica-0.8.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

musica-0.8.1-cp311-cp311-macosx_11_0_arm64.whl (553.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

musica-0.8.1-cp311-cp311-macosx_10_15_x86_64.whl (613.9 kB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

musica-0.8.1-cp310-cp310-win_amd64.whl (940.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

musica-0.8.1-cp310-cp310-win32.whl (722.2 kB view details)

Uploaded CPython 3.10 Windows x86

musica-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

musica-0.8.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

musica-0.8.1-cp310-cp310-macosx_11_0_arm64.whl (552.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

musica-0.8.1-cp310-cp310-macosx_10_15_x86_64.whl (612.2 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

musica-0.8.1-cp39-cp39-win_amd64.whl (939.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

musica-0.8.1-cp39-cp39-win32.whl (722.5 kB view details)

Uploaded CPython 3.9 Windows x86

musica-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

musica-0.8.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

musica-0.8.1-cp39-cp39-macosx_11_0_arm64.whl (552.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

musica-0.8.1-cp39-cp39-macosx_10_15_x86_64.whl (612.2 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

musica-0.8.1-cp38-cp38-win_amd64.whl (940.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

musica-0.8.1-cp38-cp38-win32.whl (722.3 kB view details)

Uploaded CPython 3.8 Windows x86

musica-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

musica-0.8.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

musica-0.8.1-cp38-cp38-macosx_11_0_arm64.whl (552.3 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

musica-0.8.1-cp38-cp38-macosx_10_15_x86_64.whl (611.9 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

musica-0.8.1-cp37-cp37m-win_amd64.whl (941.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

musica-0.8.1-cp37-cp37m-win32.whl (723.1 kB view details)

Uploaded CPython 3.7m Windows x86

musica-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

musica-0.8.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

musica-0.8.1-cp37-cp37m-macosx_10_15_x86_64.whl (611.4 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file musica-0.8.1.tar.gz.

File metadata

  • Download URL: musica-0.8.1.tar.gz
  • Upload date:
  • Size: 428.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for musica-0.8.1.tar.gz
Algorithm Hash digest
SHA256 6e76fdf355e35bef64c50e31b6cc51891292477b3802fa17c4fb5056e175b59e
MD5 2a4bfcf6ffaf084f42a3d5b20db5757a
BLAKE2b-256 77934bca9b3e7dfe5e92d953e9d06057cec43bec6ff59b15d086825752ad9e66

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: musica-0.8.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 942.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for musica-0.8.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d5d918248bc88f39a426e593f0120e292f1dbf47306819a249410803906a7202
MD5 65010ce4d991d66feff7972cb5c0da37
BLAKE2b-256 2c906afdeaed71eb42b7c4ce8645db7ea77ea3a9569f81c534d74bfd87ca7155

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: musica-0.8.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 722.6 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for musica-0.8.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 83c05f14b491019c4fd3956c674350a300c66812fea5b13e3ee2cbd7226c5cf9
MD5 1406f001088226a691f8e47ee52f6644
BLAKE2b-256 387e18b577ac37a328b1e68366c4178059e8ea52b9f2f70c80f5c7b1a98b7215

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef7f6f9293de4bfa1423c50e68de211f72b10fd72855c67f8f4125f47171e0ae
MD5 6d4b4756e44b16a6038264f1a842b794
BLAKE2b-256 8d81997fc11f32e41028678dea8f4d09e29e1d3d387a6136ee7a5a71872df518

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a0318d70d26358f0c01a0402e2cb380bfaead1d6c23ea9091d47b8cbcc95c591
MD5 1c4240e39bcc837fe7ea215500d599a4
BLAKE2b-256 625261d8429a6965792ca4e9a2b933119bc485e6818e898a2dded46afae4190b

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a2e0bd2da85c45214885c90e23192d83cfaed35ebf668f78256ad3d21efd4491
MD5 65c1391ddcae2c29678312b4090bc5ac
BLAKE2b-256 e7c27f1deae17460d272fa8f8512fb12b05cd423c2b2ff2c13a462c3ffe0668d

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2a75de9756e87645bac073706cc286d36323a582f2da09bfd06970ded93e1002
MD5 c60f91cb95fec8def92836bef923298d
BLAKE2b-256 caae36f46d3f4a98972a6b076a8fcc6b1ff1b17e52ad2e78d890bf255890548d

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: musica-0.8.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 941.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for musica-0.8.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9fb7ce9df56cb9ab9476a3c36ef700fc8dcbaac2c36482dfd322519c113af8a7
MD5 9550a9364c4c2c5e2759e3de29b6028e
BLAKE2b-256 9a8bcc0dfdaf727d895e3290a5750dccc1f65591df554a710ecece669009ca1d

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: musica-0.8.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 722.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for musica-0.8.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 c21054784fd8f2fecdd8ca97d829afb22a02ce05ba731f6c45af93555b8c3d74
MD5 ef8d216f85f308c39c07dc41c621ee7a
BLAKE2b-256 d9afc2e85f268eb5651c44d0e752354b2811c31d3fb09d78414771aa0deba773

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 edf3ced3a0b91be63bccc78905cff2b3abc064af80c70554d945eb3024d77816
MD5 2455e6321301683122472c46cb4902a3
BLAKE2b-256 7e6b1a7eb5bd34de918354e17003f2df2f9eb45c901a1f3dcf20776fd5566e80

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 41e4f752f48b706b0ea57743ad552ace0faa2d6037f768708406e6885e2bfa44
MD5 8041e8f9c732c94d9cded3392aad4d0c
BLAKE2b-256 a9dbf94e2b7f134b5065344ad2531cc5c674ec5f495e30a73210a0887bdf0f70

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 78b272f49598ee9ff7d6c0e7a988262753c1880e5d506a8802de7a2ae9722215
MD5 3e9c6d9c645bfc8f5e5b5f64b4dbbfb6
BLAKE2b-256 e259d8e94998b3691ff38d284a6e74ce0381589f25249e77632278bd37fadfb3

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ecd48a75cf6a39e863f55f0a5d88d0a6eb43ec2296dd8e7d098d306130208a16
MD5 449e78b1bc1f4209ebafb17755a0a07a
BLAKE2b-256 948bd5aef002faaf2860cd7ae7020d6786a4976b0d702b9ce4db3469e48074b9

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: musica-0.8.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 940.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for musica-0.8.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 512d975eda5191811461e2e13b3f21a24a5f03ba0e194134ca1cdcd640e31230
MD5 da4f14d3d2b99a9389217adb6df4c467
BLAKE2b-256 d693e5803b7bf5aa670c65eeed74bd65f514f419fc2a0b54c1a8f370e1f8f66f

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: musica-0.8.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 722.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for musica-0.8.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 2e1d033c8099114badd79c65c4aef5e4930d46ffa5b7f2bc772ffcf5e351709e
MD5 cffb2531af4882556540899c7fd62a87
BLAKE2b-256 31d611a9603bf918872074f25c5fc0e20b4375e0103b66a78fb962ba9fe829bb

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ba7eff39cee846d8910669b376e5d9adb57f3b934499bce537286425193782bf
MD5 6750cbb703cfeb9e8d3f5703e02ed408
BLAKE2b-256 aa5d63d83f186685584e02456b6d992be134ef20d9c721c94d6341a3b0e9102f

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bf7f38c5fce13b4a01211810f3aaf7cff15798ae268b812801aa91cb7a6ee1d0
MD5 192ed712d4f130bcddf56059528499b6
BLAKE2b-256 dcbde43e8a28534dbb29e40d19d2ba9ced6ee2a5de2166271c7f00760da97cb6

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 43bc20a80264c87f07b056a3c25d98317450867153cf64bbe6fe9b05d59baa5d
MD5 d5f033c176cae842dfb3003801591baf
BLAKE2b-256 6db3493fec8629fe1a04fb385d6fc42bb8ed5f6612c2a8daabba36ad533c6a3c

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e750a698ed5622e3a793e350a45c3e3a05b97d39f76e67f7e7f9201cb19ecf72
MD5 33bab0b90b339359f778551274096c3b
BLAKE2b-256 64bdc9ebd555ee85e50869a07d8bc042c8011999476fe59147266f01d0887c64

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: musica-0.8.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 939.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for musica-0.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f5a46feb94bed79613c594f8d602cc259d523b00581350688d709ba1d825ae79
MD5 6b836c99c358a4a02ae9dc6dd8fa66f4
BLAKE2b-256 88b9c2b73d38623694a905e4f5fb10420febaa2eabce1f119fc4d627614159d4

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: musica-0.8.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 722.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for musica-0.8.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ecbacec37000493ce26ca7dd19b1e082043d9fcedce77da21447c5a5a0b8e404
MD5 c9a4111d6d9189cfff6aa7bfbe640b44
BLAKE2b-256 ef9119a7e1d7429fca5496f5ffd7c890d28682213d54da9726beb7d304587aaa

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f669f8e952b7897aa4903acf212cef030ed42fa271d7f2b07c65cf4ecb46ded
MD5 7b59787b49a57c2cb6b1129b24741562
BLAKE2b-256 29e74aae7a2591fbc7fe975ef8d8f983259c8788343ca362bb7aab05a63d50b1

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4fbf98aa363dfb77893a17b924392e7dd44caedfdab55422ca8aeb0dc308c337
MD5 c6cf8504fddae1b1ca0ba387ead8b5e6
BLAKE2b-256 07cbee5f500cf74614249a584ffe65b1452ce9fc6783ce35cfa6e3b44bd99c53

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8bf5c6699530339195ba1aabfc6513c0a7b848ea74b2eaf84ed621b7ff628ecc
MD5 0a8995232abdb99e687d4a9e73299db1
BLAKE2b-256 26f098f5ca44b914444f7b0d68262d1ed4fb701a262bebddb680194df1eebbe7

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 166acacb9bfbfba560648910615937060908f162c8934730617f2132a5caf51c
MD5 9bb6cc1867d21204a171bcfe98c8f18b
BLAKE2b-256 97ed5a2762231000c0e9f40264d60849b78e16eee9768bfcffcca221093de7cf

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: musica-0.8.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 940.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for musica-0.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b0350b257587af7a784fb52060541934b6cf149fddbd4575352a1ffe68abc252
MD5 2832944a0c88ae0bb74a53f9486dea2b
BLAKE2b-256 4f003a6bcf3b9d859b76d3ce449a4324a2a0441be8f0479e66670e2d16bb71c1

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: musica-0.8.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 722.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for musica-0.8.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 9f5500b8bf9109451e8c4e920cf03061839e5b826f2812ef9d54ebbc0da0d5d2
MD5 dfe817bd8b54097a5f795e93bcab1c79
BLAKE2b-256 07a49aeba443617ab1bbe36e25befcaf12ed45416405dd02e36ab938d0b6adcd

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23d7dad8091a5ab6439e88845db6d5e17a8ad24719b06dc16bcdd9e4e310db1e
MD5 5e3105a383caca4e97a1f276f97280b3
BLAKE2b-256 9b72e3ba54484471e37d3521dc1f587139beb3b85ae93f7d75ea29bef11758f6

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e4e0c57654a45739cb41f606715c5702bc3f8b42c34edc0c43846c1af36db4ae
MD5 4b886f26f6c0d6283edc4829ff298f26
BLAKE2b-256 6f9a6d4198a905ba945a7322737dceea19a4e66bdc67fc2ea0872e847105a487

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 50e90d8eefc51403fed4ecf55d0fd7cf234186c57f7a0675058568f9e2037220
MD5 10c40f7621c3996730e5105d796fc8e1
BLAKE2b-256 1e4307ab9ff945a1623c5cc5722200a729cc23652a0283e98e4fb3006c2576fd

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5089a4151a3750dbb2997ecfa15c1f2b4823826a1b103d395f3b5ea3c5f7f6e2
MD5 6f5f0ce3a89b86aae278f6f9a112568a
BLAKE2b-256 5095c50c762096d03edc06ffcf2909b4f81550bc0d4951c579dc25d5327f4b67

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: musica-0.8.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 941.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for musica-0.8.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b8d3883572eec1c5dfc1d6a11a8bc80b95484c03c8a615c2d45906cbab4d58bd
MD5 586cc3e27d26a48b350834aedf26c730
BLAKE2b-256 e88d7d086a890642fcc3ce2b2bcf1a1fcd3d1f0a841b35229c76867597b2a275

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: musica-0.8.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 723.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for musica-0.8.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 9e98b7432c6029f72176df6c48638ff0fb94484b9e238ab1661246a6bbddc2b8
MD5 764897769917fbf61462389074a06210
BLAKE2b-256 892829f36885bd7fded26906d2abbd450eb54f74b98dee62ea0c8ee0f36f0698

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cd65c6ae2ac3f0db3bfe76602f9adf5028d246da6682e7d641d4b2f87d37ce65
MD5 8aefa6f937df28fb1ff24269bec8df15
BLAKE2b-256 519495911376ad5f48dbf56facdaffd7a4373005361f16a86bd9e8f138fc515a

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 748914aa111231be254f18bebc08281ea30718454c8ff99c9a0fd22bf168a9f1
MD5 83dd9639db545eff23dd2793a24431de
BLAKE2b-256 a8cc9a8ef89062023d59ef5fe38487730963b01a0fbe26079c68d513a9b1ae57

See more details on using hashes here.

File details

Details for the file musica-0.8.1-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for musica-0.8.1-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c813cadde0bc24b64fa64c8cc03917df4152fd688b9a9b11c9dae4464433deff
MD5 4cbfd8a2863b921841e00b2bd48b74be
BLAKE2b-256 03543077bfad1a5946b6714b14a2ac4818321a07d8c37b54ab328b9f0bd8a29b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page