Skip to main content

A python package for music notation and generation

Project description

MusicLang Predict

MusicLang logo

MusicLang Predict is a tool to create original midi soundtracks with generative AI model. It can be used for different use cases :

  • Predict a new song from scratch (a fixed number of bars)
  • Continue a song from a prompt
  • Predict a new song from a template (see examples below)
  • Continue a song from a prompt and a template

To solve template generation use cases, we provide an interface to create a template from an existing midi file.

Our transformers models are hosted on Hugging Face and are available here : MusicLang.

We are based on the MusicLang music language. See : MusicLang for more information.

Installation

Install the musiclang-predict package with pip :

pip install musiclang-predict

How to use ?

  1. Create a new 8 bars song from scratch :
from musiclang_predict import predict, MusicLangTokenizer
from transformers import GPT2LMHeadModel

# Load model and tokenizer
model = GPT2LMHeadModel.from_pretrained('musiclang/musiclang-4k')
tokenizer = MusicLangTokenizer('musiclang/musiclang-4k')
soundtrack = predict(model, tokenizer, chord_duration=4, nb_chords=8)
soundtrack.to_midi('song.mid', tempo=120, time_signature=(4, 4))
  1. Or use an existing midi song as a song structure template :
from musiclang_predict import midi_file_to_template, predict_with_template, MusicLangTokenizer
from transformers import GPT2LMHeadModel

# Load model and tokenizer
model = GPT2LMHeadModel.from_pretrained('musiclang/musiclang-4k')
tokenizer = MusicLangTokenizer('musiclang/musiclang-4k')

template = midi_file_to_template('my_song.mid')
soundtrack = predict_with_template(template, model, tokenizer)
soundtrack.to_midi('song.mid', tempo=template['tempo'], time_signature=template['time_signature'])

See : MusicLang templates For a full description of our template format. It's only a dictionary containing information for each chord of the song and some metadata like tempo. You can even create your own without using a base midi file !

  1. Or even use a prompt and a template to create a song
from musiclang_predict import midi_file_to_template, predict_with_template, MusicLangTokenizer
from transformers import GPT2LMHeadModel
from musiclang import Score

# Load model and tokenizer
model = GPT2LMHeadModel.from_pretrained('musiclang/musiclang-4k')
tokenizer = MusicLangTokenizer('musiclang/musiclang-4k')
template = midi_file_to_template('my_song.mid')
# Take the first chord of the template as a prompt
prompt = Score.from_midi('my_prompt.mid', chord_range=(0, 4))
soundtrack = predict_with_template(template, model, tokenizer, 
                                   prompt=prompt,  # Prompt the model with a musiclang score
                                   prompt_included_in_template=True  # To say the prompt score is included in the template
                                   )
soundtrack.to_midi('song.mid', tempo=template['tempo'], time_signature=template['time_signature'])

Contact us

If you want to help shape the future of open source music generation, please contact us

License

The MusicLang predict package (this package) and its associated models is licensed under the GPL-3.0 License. The MusicLang base language (musiclang package) is licensed under the BSD 3-Clause License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

musiclang_predict-0.0.1-py3-none-any.whl (26.2 kB view details)

Uploaded Python 3

File details

Details for the file musiclang_predict-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for musiclang_predict-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f4451a573c92045e58fe539f64bfbfc01d4ef52cdc24887d1acec36596cadd96
MD5 c6149f38d65fad40b6937500bdec352c
BLAKE2b-256 65d8292cc9677e6bb80a2fd1d5be85c0f4d5b3ff38c92b4618fbcafcc918287b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page