A python package for music notation and generation
Project description
MusicLang Predict
MusicLang Predict is a tool to create original midi soundtracks with generative AI model. It can be used for different use cases :
- Predict a new song from scratch (a fixed number of bars)
- Continue a song from a prompt
- Predict a new song from a template (see examples below)
- Continue a song from a prompt and a template
To solve template generation use cases, we provide an interface to create a template from an existing midi file.
Our transformers models are hosted on Hugging Face and are available here : MusicLang.
We are based on the MusicLang music language. See : MusicLang for more information.
Installation
Install the musiclang-predict package with pip :
pip install musiclang-predict
How to use ?
- Create a new 8 bars song from scratch :
from musiclang_predict import predict, MusicLangTokenizer
from transformers import GPT2LMHeadModel
# Load model and tokenizer
model = GPT2LMHeadModel.from_pretrained('musiclang/musiclang-4k')
tokenizer = MusicLangTokenizer('musiclang/musiclang-4k')
soundtrack = predict(model, tokenizer, chord_duration=4, nb_chords=4, temperature=1.0)
soundtrack.to_midi('song.mid', tempo=120, time_signature=(4, 4))
- Or use an existing midi song as a song structure template :
from musiclang_predict import midi_file_to_template, predict_with_template, MusicLangTokenizer
from transformers import GPT2LMHeadModel
# Load model and tokenizer
model = GPT2LMHeadModel.from_pretrained('musiclang/musiclang-4k')
tokenizer = MusicLangTokenizer('musiclang/musiclang-4k')
template = midi_file_to_template('my_song.mid')
soundtrack = predict_with_template(template, model, tokenizer, temperature=1.0)
soundtrack.to_midi('song.mid', tempo=template['tempo'], time_signature=template['time_signature'])
See : MusicLang templates For a full description of our template format. It's only a dictionary containing information for each chord of the song and some metadata like tempo. You can even create your own without using a base midi file !
- Or even use a prompt and a template to create a song
from musiclang_predict import midi_file_to_template, predict_with_template, MusicLangTokenizer
from transformers import GPT2LMHeadModel
from musiclang import Score
# Load model and tokenizer
model = GPT2LMHeadModel.from_pretrained('musiclang/musiclang-4k')
tokenizer = MusicLangTokenizer('musiclang/musiclang-4k')
template = midi_file_to_template('my_song.mid')
# Take the first chord of the template as a prompt
prompt = Score.from_midi('my_prompt.mid', chord_range=(0, 4))
soundtrack = predict_with_template(template, model, tokenizer,
temperature=1.0,
prompt=prompt, # Prompt the model with a musiclang score
prompt_included_in_template=True # To say the prompt score is included in the template
)
soundtrack.to_midi('song.mid', tempo=template['tempo'], time_signature=template['time_signature'])
- Chord prediction with a transformer model
a. Without a prompt :
from musiclang_predict import predict_chords, MusicLangTokenizer
from transformers import AutoModelForCausalLM, AutoTokenizer
from musiclang.library import *
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained('musiclang/musiclang-chord-v2-4k')
tokenizer = MusicLangTokenizer('musiclang/musiclang-chord-v2-4k')
soundtrack = predict_chords(model, tokenizer, nb_chords=4, temperature=1.0)
# Give the chord a simple voicing (closed position chord)
soundtrack = soundtrack(b0, b1, b2, b3)
# Save it to midi
soundtrack.to_midi('song.mid', tempo=120, time_signature=(4, 4))
b. With a prompt :
from musiclang_predict import predict_chords, MusicLangTokenizer
from transformers import AutoModelForCausalLM, AutoTokenizer
from musiclang.library import *
prompt = (I % I.M) + (V % I.M)['6'].o(-1)
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained('musiclang/musiclang-chord-v2-4k')
tokenizer = MusicLangTokenizer('musiclang/musiclang-chord-v2-4k')
soundtrack = predict_chords(model, tokenizer, nb_chords=4, prompt=prompt, temperature=1.0)
# Give the chord a simple voicing (closed position chord)
soundtrack = soundtrack(b0, b1, b2, b3)
# Save it to midi
soundtrack.to_midi('song.mid', tempo=120, time_signature=(4, 4))
Contact us
If you want to help shape the future of open source music generation, please contact us
License
The MusicLang predict package (this package) is licensed under the GPL-3.0 License.
However please note that specific licenses applies to each models. If you would like to use one of our model in your product or a custom one, please contact us. We are looking forward to hearing from you !
The MusicLang base language (musiclang package) is licensed under the BSD 3-Clause License.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file musiclang-predict-0.5.0.tar.gz
.
File metadata
- Download URL: musiclang-predict-0.5.0.tar.gz
- Upload date:
- Size: 30.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c3c921a02ea1496d8ad608760f62ddf7571b86674f26c636a65b1e567affd643 |
|
MD5 | 8aea550729973f65be47ecd83b1313c8 |
|
BLAKE2b-256 | 315f9cfd750c278a5262481f01d6465f01dbec2beed3bc94986f870fff5ed3ae |
File details
Details for the file musiclang_predict-0.5.0-py3-none-any.whl
.
File metadata
- Download URL: musiclang_predict-0.5.0-py3-none-any.whl
- Upload date:
- Size: 32.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e6b81504e27f7b742712a6ce869a652d4668aae268c95b4c8a81f93fe5e7cd33 |
|
MD5 | eb993e82f3e8ccffcc581508ad6ea7dd |
|
BLAKE2b-256 | 3200903300f39a3514659f91d9b278be51b3f847879269c01489b9ccd8d6cc97 |