Skip to main content

Package for polytopic intepretation of music, with application to musical segmentation

Project description

Polytopes for music segmentation

Polytopic paradigms to study music, defined in [1], based on [2] and [3].

The goal of the polytopic approach is to define a new compression criteria, then used as cost for music segmentation, based on dynamic programming. See [4] for more details on this approach.

[1] Marmoret, A., Cohen, J. E., & Bibmot, F. (2022). Polytopic Analysis of Music. arXiv preprint arXiv:2212.11054. [2] Guichaoua, C., Modèles de compression et critères de complexité pour la description et l’inférence de structure musicale. PhD thesis, 2017. [3] Louboutin, C., Modélisation multi-échelle et multi-dimensionnelle de la structure musicale par graphes polytopiques. PhD thesis, Rennes 1, 2019. [4] Sargent, G., Bimbot, F., & Vincent, E. (2016). Estimating the structural segmentation of popular music pieces under regularity constraints. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(2), 344-358.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MusicOnPolytopes-0.1.0.tar.gz (59.9 kB view details)

Uploaded Source

Built Distribution

MusicOnPolytopes-0.1.0-py3-none-any.whl (68.9 kB view details)

Uploaded Python 3

File details

Details for the file MusicOnPolytopes-0.1.0.tar.gz.

File metadata

  • Download URL: MusicOnPolytopes-0.1.0.tar.gz
  • Upload date:
  • Size: 59.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.11

File hashes

Hashes for MusicOnPolytopes-0.1.0.tar.gz
Algorithm Hash digest
SHA256 eab1638e6fb3bbb28b359a62f241e2a6363b5e63dfcc90f58e0924e5536a4313
MD5 af01d094c28d63a909c8a8e5ae659788
BLAKE2b-256 dffae2ee5cff58507388a51c53bad30eab6c622e9ba17b9c3619510826d7c0e3

See more details on using hashes here.

File details

Details for the file MusicOnPolytopes-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for MusicOnPolytopes-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f9bbf780361d7a1e5478123f6a65554c1e7df142003260d7ac1007a195fa2e3e
MD5 6e247de33b4ac9678f3fbd38e6047c3e
BLAKE2b-256 b4f72daf35800a8393352274a3624399d1a5d1ba3d1df19b23f014e8e6b3943e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page