Library of standard monitoring hooks for the Tornado framework
Project description
mutornadomon
µtornadomon is a library designed to be used with Tornado web applications. It adds an endpoint
(/mutornadomon
) to HTTP servers which outputs application statistics for use with standard metric
collectors.
Usage
The monitor is initialized using mutornadomon.config.initialize_mutornadomon
.
Exposing an HTTP endpoint
If you only pass a tornado web application, it will include request/response statistics, and expose an HTTP endpoint for polling by external processes:
from mutornadomon.config import initialize_mutornadomon
import signal
[...]
application = tornado.web.Application(...)
monitor = initialize_mutornadomon(application)
def shut_down(*args):
monitor.stop()
some_other_application_stop_function()
tornado.ioloop.IOLoop.current().stop()
for sig in (signal.SIGQUIT, signal.SIGINT, signal.SIGTERM):
signal.signal(sig, shut_down)
This will add a /mutornadomon
endpoint to the web application.
Here is an example request to that endpoint:
$ curl http://localhost:8080/mutornadomon
{"process": {"uptime": 38.98995113372803, "num_fds": 8, "meminfo": {"rss_bytes": 14020608, "vsz_bytes": 2530562048}, "cpu": {"num_threads": 1, "system_time": 0.049356776, "user_time": 0.182635456}}, "max_gauges": {"ioloop_pending_callbacks": 0, "ioloop_handlers": 2, "ioloop_excess_callback_latency": 0.0006290912628173773}, "min_gauges": {"ioloop_pending_callbacks": 0, "ioloop_handlers": 2, "ioloop_excess_callback_latency": -0.004179096221923834}, "gauges": {"ioloop_pending_callbacks": 0, "ioloop_handlers": 2, "ioloop_excess_callback_latency": 0.0006290912628173773}, "counters": {"callbacks": 388, "requests": 6, "localhost_requests": 6, "private_requests": 6}}
If you want to add your own metrics, you can do so by calling the .kv()
or
.count()
methods on the monitor object at any time.
The HTTP endpoint is restricted to only respond to request from loopback.
Providing a publishing callback
Alternatively, instead of polling the HTTP interface, you can pass in a publisher
callback:
import pprint
def publisher(metrics):
pprint.pprint(metrics)
monitor = initialize_mutornadomon(application, publisher=publisher)
By default, this will call the publisher callback every 10 seconds.
To override this pass the publish_interval
parameter (in miliseconds).
Monitoring non-web applications
If you don't pass an application object, other stats can still be collected:
import pprint
def publisher(metrics):
pprint.pprint(metrics)
monitor = initialize_mutornadomon(publisher=publisher)
This only works with the publisher callback interface.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file mutornadomon-0.5.1.tar.gz
.
File metadata
- Download URL: mutornadomon-0.5.1.tar.gz
- Upload date:
- Size: 9.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.4.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 442b24178924a510525e25bc17d2222e849ee4fbe6edc592b631173103e7fa19 |
|
MD5 | 0237b198ed9996bb5338a1b7ce72bd47 |
|
BLAKE2b-256 | c8f37e2f6ffe00344faa9744f9e7aefc19a8f3633e39a3baecb70b60e1ca3983 |