Skip to main content

Library of standard monitoring hooks for the Tornado framework

Project description

Build Status Coverage Status

mutornadomon

µtornadomon is a library designed to be used with Tornado web applications. It adds an endpoint (/mutornadomon) to HTTP servers which outputs application statistics for use with standard metric collectors.

Usage

The monitor is initialized using mutornadomon.config.initialize_mutornadomon.

Exposing an HTTP endpoint

If you only pass a tornado web application, it will include request/response statistics, and expose an HTTP endpoint for polling by external processes:

from mutornadomon.config import initialize_mutornadomon
import signal

[...]

application = tornado.web.Application(...)
monitor = initialize_mutornadomon(application)

def shut_down(*args):
    monitor.stop()
    some_other_application_stop_function()
    tornado.ioloop.IOLoop.current().stop()

for sig in (signal.SIGQUIT, signal.SIGINT, signal.SIGTERM):
    signal.signal(sig, shut_down)

This will add a /mutornadomon endpoint to the web application.

Here is an example request to that endpoint:

$ curl http://localhost:8080/mutornadomon
{"process": {"uptime": 38.98995113372803, "num_fds": 8, "meminfo": {"rss_bytes": 14020608, "vsz_bytes": 2530562048}, "cpu": {"num_threads": 1, "system_time": 0.049356776, "user_time": 0.182635456}}, "max_gauges": {"ioloop_pending_callbacks": 0, "ioloop_handlers": 2, "ioloop_excess_callback_latency": 0.0006290912628173773}, "min_gauges": {"ioloop_pending_callbacks": 0, "ioloop_handlers": 2, "ioloop_excess_callback_latency": -0.004179096221923834}, "gauges": {"ioloop_pending_callbacks": 0, "ioloop_handlers": 2, "ioloop_excess_callback_latency": 0.0006290912628173773}, "counters": {"callbacks": 388, "requests": 6, "localhost_requests": 6, "private_requests": 6}}

If you want to add your own metrics, you can do so by calling the .kv() or .count() methods on the monitor object at any time.

The HTTP endpoint is restricted to only respond to request from loopback.

Providing a publishing callback

Alternatively, instead of polling the HTTP interface, you can pass in a publisher callback:

import pprint

def publisher(metrics):
    pprint.pprint(metrics)

monitor = initialize_mutornadomon(application, publisher=publisher)

By default, this will call the publisher callback every 10 seconds. To override this pass the publish_interval parameter (in miliseconds).

Monitoring non-web applications

If you don't pass an application object, other stats can still be collected:

import pprint

def publisher(metrics):
    pprint.pprint(metrics)

monitor = initialize_mutornadomon(publisher=publisher)

This only works with the publisher callback interface.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mutornadomon-0.5.1.tar.gz (9.2 kB view details)

Uploaded Source

File details

Details for the file mutornadomon-0.5.1.tar.gz.

File metadata

  • Download URL: mutornadomon-0.5.1.tar.gz
  • Upload date:
  • Size: 9.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.4.10

File hashes

Hashes for mutornadomon-0.5.1.tar.gz
Algorithm Hash digest
SHA256 442b24178924a510525e25bc17d2222e849ee4fbe6edc592b631173103e7fa19
MD5 0237b198ed9996bb5338a1b7ce72bd47
BLAKE2b-256 c8f37e2f6ffe00344faa9744f9e7aefc19a8f3633e39a3baecb70b60e1ca3983

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page